HeXx Rules & Implementation

CMPUT 355: Games, Puzzles, and Algorithms

| ecture Outline

1. Logistics & Recap
2. Rules of Hex

3. Implementation Issues

| ogistics

 TA Office hours: Every Thursday from 1:00pm-2:00pm in UCOMM 3-136

 Drop Iin basis; just show up and ask questions
o Started yesterday (how'd it go”?)
* Practice quiz questions: Released later today (Jan 16)
 Answers released Tuesday (Jan 20)
e Quiz 1: Friday, Jan 23
* In-class, full 50 minutes

 No need to emall If you have to miss it; up to 3 replaced by final exam automatically
* Questions will be very similar to practice questions

e (at least 3 will be suspiciously similar!)

|_ogistics: Code walkthroughs

Question: Which style of code walkthrough did you prefer?

go_helper.py

= go_helper.py [master]

156 def makemove(self, where, color):

157 assert (self.brd[where] == EMPTY), 'that point is not empty heng/StOne_bOard.py

158 self.brd = change_string(self.brd, where, color) Track groups and liberties instead of searching after each move: Union to update block membership:
159 self.stones = [set(), set()] # start with empty board def merge_blocks(self, p, q):
160 ca [] self.blocks ={} # point (block name) -> stones in block proot, groot = UFunion(self.parents, p, q)
P selfnbrs ={} # point (block name) -> neighbors seIf.l?Iock:s[pro_ot].update(self.blgcks[g.ro..ot])
161 for j in self.nb r_offsets: self.liberties = {} # point (block name) -> liberties selfliberties[proot].update(self.liberties[qroot])

162 X

163 if self.brd[x] == opponent(color): Use find and union to update tracking after each move: Find to update block lierties:

164 cap += self.captured(x, opponent(color)) def add_stone(self, color, point): def remove_liberties(self, p, q):

165 self.stones[color].add(point) qroct = UFEfind(self.parents, q)

self.liberties[proot] -= self.blocks[qroot]

where + j self.parents ={} # point->parentinblock TR UL T SRR

166 if (len(cap)>0):

167 #print('removing captured group at', point_to_alphanum(wh for nin selfnbrsfpointg: o TR T SRR
ere, self.C)) if n in self.stones[color]: # same-color nbr
' B self. merge_blocks(n, point)
168 for j in cap: if n in self.stones[Cell.opponent(color)]: # opponent nbr
169 self.brd = change_string(self.brd, j, EMPTY) self.remove_liberties(n, point)

170 return cap, True # move ok sofar
171

172 if self.captured(where, color):

172 nrint/('whnnne na lihartv thare: nat allnwad')

Recap: Union-Find Operations in Go

e Black stone on 6

@ * White stone on 8
* Black stone on 9

a @ * White stone on 4

@ ‘ @ @ * Black stone on 5

White stone on O

After & is placed, we check neighbours 6, 9, 4, 1 for merge operations e Black stone on 1
1. Join 5's block (i.e., 5) to 0 6's block, so it points to 6's block's root
(i.e., 6) (O's block's liberties become

2. Next, join 5's block (i.e., 6) and 9's block (i.e., 9).

3. Without the union-by-rank optimization, that could mean either 6
points to 9 or 9 points to 6; | chose to show 6 points to 9.

empty

4. But with the union-by-rank optimization, we would have to make 9
point to 6, because it has strictly lower rank than 6.

Recap: hexgo/stone_board.py

Union to update block membership:
def merge blocks(self, p, q):
proot, groot = UF.union(self.parents, p, q)

Track groups and liberties instead of searching after each move:
self.stones = [set(), set()] # start with empty board
self.blocks ={} # point (block name) -> stones in block
self.nbrs ={} # point (block name) -> neighbors
self.liberties = {} # point (block name) -> liberties
self.parents = {} # point -> parent in block

Use find and union to update tracking after each move:

def add stone(self, color, point):
self.stones[color].add(point)
self.blocks[point].add(point)

for n in self.nbrs[point]:
if n in self.stones[color]: # same-color nbr
self. merge_blocks(n, point)
if n in self.stones[Cell.opponent(color)]: # opponent nbr
self.remove_liberties(n, point)

SE
SE
SE

f.blocks[proot].update(self.blocks[groot])
f.liberties[proot].update(self.liberties[groot])
f.liberties[proot] -= self.blocks[proot]

Find to update block liberties:
def remove_liberties(self, p, q):
proot = UFfind(self.parents, p)
qgroot = UFEfind(self.parents, q)
self.liberties[proot] -= self.blocks[groot]
self.liberties[groot] -= self.blocks[proot]

Hex Rules

There are two players, Black and White

—ach player makes a move In alternation, starting with Black

* A move is placing a stone In an Empty hexagonal cell

* Each cell has 2-6 neighbours

Two facing borders of the board are
the other two edges are White

wo cells are adjacent if they share a side

Slack,

 Each bottom cell is adjacent to the bottom border, etc.

 Each corner cell is thus adjacent to two borders

The game ends when one player has joined the two edges of
thelr own colour with a path of stones

* The player who joins their edges wins

Empty Hex board

Winning position for White

* As with Go, can represent the board

e Fach node can be coloured Black,

 Question: How to check for a

Graph Representation

as a graph

* One node per hex cell

e Edge between each pair of
adjacent cells

e Plus four extra nodes for borders

White, or Empty

winning condition on the graph®?

* As with Go, can represent the board

e Fach node can be coloured Black,

 Question: How to check for a

Graph Representation

as a graph

* One node per hex cell

e Edge between each pair of
adjacent cells

e Plus four extra nodes for borders

White, or Empty

winning condition on the graph®?

Neighbours In hexgo/stone board.py

Instead of calculating a cell's neighbours every time we need them, we
compute all of them in advance and then look them In self.nbrs whenever
we need them. The following code is all In Stone_board. init

—ach cell has (up to) six neighbours:
if gt: # hex game

self.top, self.rgt, self.btm, self.lft = -4, -3,-2, -| O]_
self.border = range(self.top, 0) # -4, -3, -2, -1

self.p_range = range(self.top, self.n) # -4, ..., rows*cols- | 5 2
self.nbr_offset = ((-1,0),(-1,1),(0,1),(1,0),(1,-1),(0,-1))

0| 4 3

5.2
43

Create an empty set to store each cell and border's neighbours:

for point in self.p_range:
self.nbrs[point] = set()

Initializing Neighobours

First record all the neighbouring cells:
r_range, c_range = range(self.r), range(self.c)
for r in range(self.r):
for c in range(self.c):
for (y,x) in self.nbr_offset:
if r+y in r_range and c*+x in c_range:
self.nbrs[Pt.rc_point(r,c,self.c)].add(Pt.rc_point(r+y,ctx,self.c))

hen the neighbouring borders:

for j in range(self.c):
self.nbrs[self.top].add())
self.nbrs[j].add(self.top)
self.nbrs[self.btm].add(self.n-j-1)
self.nbrs[self.n-j-1].add(self.btm)

for k in range(self.r):
self.nbrs[self.Ift].add(k*self.c)
self.nbrs[k*self.c].add(self.Ift)
self.nbrs[self.rgt].add(k*self.c+self.c-1)
self.nbrs[k*self.c+self.c-1].add(self.rgt)

0

1

FPatns

A pathin hexis just a group of adjacent cells with the same colour
* [t's a block!

e (Can use exactly the same union-find approach to track paths as in Go:

def add stone(self, color, point):
self.stones[color].add(point)
self.blocks[point].add(point)

for n in self.nbrs[point]:
if n in self.stones[color]: # same-color nbr
self.merge blocks(n, point)
if n in self.stones[Cell.opponent(color)]: # opponent nbr
self.remove_liberties(n, point)

Fnd of Game

* Question: How can we detect the end of the game using our union-
find approach?
 Black win: There is a path from the top to the bottom,
so there must be a block that contains both the top and bottom
borders

 White win: Must be a block containing both the left and right
borders

e S0 just check if top and bottom (or left and right) are in the same block:

def hex_ win(self, cell color):
if self.game_type != Game.hex_ game:
return False

if cell color == Cell.b:
return UFin_same block(self.parents, self.top, self.btm)

return UEin_same_block(self.parents, self.lft, self.rgt)

Summary

* Rules of Hex:

 Players alternately place stones in hexagonal cells

e First player to connect their two borders with a path of stone of their colour wins
* Implementing Hex In hexgo/stone_board.py:

e Same graph representation as Go:
Each point gets an index on a (sort of) rectangular grid

» Borders represented by special "cells” that have negative indices

* Paths represented by blocks tracked with Union-Find datastructure
(exactly the same code as Go!)

* Win condition: Both of a player's borders are in the same block

