
Hex Rules & Implementation
CMPUT 355: Games, Puzzles, and Algorithms

Lecture Outline
1. Logistics & Recap
2. Rules of Hex
3. Implementation Issues

Logistics
• TA Office hours: Every Thursday from 1:00pm-2:00pm in UCOMM 3-136

• Drop in basis; just show up and ask questions
• Started yesterday (how'd it go?)

• Practice quiz questions: Released later today (Jan 16)
• Answers released Tuesday (Jan 20)

• Quiz 1: Friday, Jan 23
• In-class, full 50 minutes
• No need to email if you have to miss it; up to 3 replaced by final exam automatically
• Questions will be very similar to practice questions
• (at least 3 will be suspiciously similar!)

Logistics: Code walkthroughs
Question: Which style of code walkthrough did you prefer?

0

Recap: Union-Find Operations in Go

8 119 10

4 75 6

0 31 21

• Black stone on 6
• White stone on 8
• Black stone on 9
• White stone on 4
• Black stone on 5
• White stone on 0
• Black stone on 1

• 0's block's liberties become
empty

After 5 is placed, we check neighbours 6, 9, 4, 1 for merge operations
1. Join 5's block (i.e., 5) to o 6's block, so it points to 6's block's root

(i.e., 6)
2. Next, join 5's block (i.e., 6) and 9's block (i.e., 9).
3. Without the union-by-rank optimization, that could mean either 6

points to 9 or 9 points to 6; I chose to show 6 points to 9.
4. But with the union-by-rank optimization, we would have to make 9

point to 6, because it has strictly lower rank than 6.

Recap: hexgo/stone_board.py
Track groups and liberties instead of searching after each move:
 self.stones = [set(), set()] # start with empty board
 self.blocks = {} # point (block name) -> stones in block
 self.nbrs = {} # point (block name) -> neighbors
 self.liberties = {} # point (block name) -> liberties
 self.parents = {} # point -> parent in block

Use find and union to update tracking after each move:
def add_stone(self, color, point):
 self.stones[color].add(point)
 self.blocks[point].add(point)

 for n in self.nbrs[point]:
 if n in self.stones[color]: # same-color nbr
 self.merge_blocks(n, point)
 if n in self.stones[Cell.opponent(color)]: # opponent nbr
 self.remove_liberties(n, point)

Union to update block membership:
 def merge_blocks(self, p, q):
 proot, qroot = UF.union(self.parents, p, q)
 self.blocks[proot].update(self.blocks[qroot])
 self.liberties[proot].update(self.liberties[qroot])
 self.liberties[proot] -= self.blocks[proot]

Find to update block liberties:
 def remove_liberties(self, p, q):
 proot = UF.find(self.parents, p)
 qroot = UF.find(self.parents, q)
 self.liberties[proot] -= self.blocks[qroot]
 self.liberties[qroot] -= self.blocks[proot]

Hex Rules
• There are two players, Black and White
• Each player makes a move in alternation, starting with Black

• A move is placing a stone in an Empty hexagonal cell
• Two cells are adjacent if they share a side

• Each cell has 2-6 neighbours
• Two facing borders of the board are Black,

the other two edges are White
• Each bottom cell is adjacent to the bottom border, etc.
• Each corner cell is thus adjacent to two borders

• The game ends when one player has joined the two edges of
their own colour with a path of stones

• The player who joins their edges wins

a b c d e f

1

2

3

4

5

6

a b c d e f

1

2

3

4

5

6

Empty Hex board

Winning position for White

Graph Representation

0 1 2

3 4 5

6 7 8

-2

-4

-3

-1

a b c

1

2

3

• As with Go, can represent the board
as a graph

• One node per hex cell
• Edge between each pair of

adjacent cells
• Plus four extra nodes for borders

• Each node can be coloured Black,
White, or Empty

• Question: How to check for a
winning condition on the graph?

Graph Representation

0 1 2

3 4 6

6 7 8

-2

-4

-3

-1

• As with Go, can represent the board
as a graph

• One node per hex cell
• Edge between each pair of

adjacent cells
• Plus four extra nodes for borders

• Each node can be coloured Black,
White, or Empty

• Question: How to check for a
winning condition on the graph?

a b c

1

2

3

Neighbours in hexgo/stone_board.py
Instead of calculating a cell's neighbours every time we need them, we
compute all of them in advance and then look them in self.nbrs whenever
we need them. The following code is all in Stone_board.__init__:

Each cell has (up to) six neighbours:
 if gt: # hex game
 self.top, self.rgt, self.btm, self.lft = -4, -3, -2, -1
 self.border = range(self.top, 0) # -4, -3, -2, -1
 self.p_range = range(self.top, self.n) # -4, ..., rows*cols-1
 self.nbr_offset = ((-1,0),(-1,1),(0,1),(1,0),(1,-1),(0,-1))
 # 0 1
 # 5 . 2
 # 4 3

Create an empty set to store each cell and border's neighbours:
 for point in self.p_range:
 self.nbrs[point] = set()

a b c

1

2

3 0 1
2

34
5

Initializing Neighbours
First record all the neighbouring cells:
 r_range, c_range = range(self.r), range(self.c)
 for r in range(self.r):
 for c in range(self.c):
 for (y,x) in self.nbr_offset:
 if r+y in r_range and c+x in c_range:
 self.nbrs[Pt.rc_point(r,c,self.c)].add(Pt.rc_point(r+y,c+x,self.c))

Then the neighbouring borders:
 for j in range(self.c):
 self.nbrs[self.top].add(j)
 self.nbrs[j].add(self.top)
 self.nbrs[self.btm].add(self.n-j-1)
 self.nbrs[self.n-j-1].add(self.btm)
 for k in range(self.r):
 self.nbrs[self.lft].add(k*self.c)
 self.nbrs[k*self.c].add(self.lft)
 self.nbrs[self.rgt].add(k*self.c+self.c-1)
 self.nbrs[k*self.c+self.c-1].add(self.rgt)

a b c

1

2

3 0 1
2

34
5

Paths
• A path in hex is just a group of adjacent cells with the same colour

• It's a block!
• Can use exactly the same union-find approach to track paths as in Go:

 def add_stone(self, color, point):
 self.stones[color].add(point)
 self.blocks[point].add(point)

 for n in self.nbrs[point]:
 if n in self.stones[color]: # same-color nbr
 self.merge_blocks(n, point)
 if n in self.stones[Cell.opponent(color)]: # opponent nbr
 self.remove_liberties(n, point)

0 1 2

3 4 6

6 7 8

-2

-4

-3

-1

End of Game
• Question: How can we detect the end of the game using our union-

find approach?
• Black win: There is a path from the top to the bottom,

so there must be a block that contains both the top and bottom
borders

• White win: Must be a block containing both the left and right
borders

• So just check if top and bottom (or left and right) are in the same block:
 def hex_win(self, cell_color):
 if self.game_type != Game.hex_game:
 return False
 if cell_color == Cell.b:
 return UF.in_same_block(self.parents, self.top, self.btm)
 return UF.in_same_block(self.parents, self.lft, self.rgt)

0 1 2

3 4 6

6 7 8

-2

-4

-3

-1

0 1 2

3 4 6

6 7 8

-2

-4

-3

-1

Summary
• Rules of Hex:

• Players alternately place stones in hexagonal cells
• First player to connect their two borders with a path of stone of their colour wins

• Implementing Hex in hexgo/stone_board.py:
• Same graph representation as Go:

Each point gets an index on a (sort of) rectangular grid
• Borders represented by special "cells" that have negative indices
• Paths represented by blocks tracked with Union-Find datastructure

(exactly the same code as Go!)
• Win condition: Both of a player's borders are in the same block

