G0o: Union-FIind Datastructure

CMPUT 355: Games, Puzzles, and Algorithms




| ecture Outline

1. Logistics & Recap

2. Union-FIind datastructure

3. Using Union-Find datastructures in Go environments



| ogistics

 TA Office hours: Every Thursday from 1:00pm-2:00pm in UCOMM 3-136

 Drop Iin basis; just show up and ask questions
o Starting this week (tomorrow)
* Practice quiz questions: Released this Friday (Jan 16)
 Answers released Tuesday (Jan 20)
e Quiz 1: Friday, Jan 23
* In-class, full 50 minutes

 No need to emall If you have to miss it; up to 3 replaced by final exam automatically
* Questions will be very similar to practice questions

e (at least 3 will be suspiciously similar!)



Recap: Go Implementation Issues

We looked at how the go/go helper.py program implements a Go environment:

 Board represented as a 1-dimensional array of points

e For an M-row, N-column board,
Point at row ¥ and column ¢ is stored at index rN + ¢

* (Guarded representation adds one column and two rows of "guards’
e Every point now has exactly 4 neighbours

| Capture is computed by searching the neighbours of a newly-placed stone

* Follow all neighbours of same colour looking for an Empty point
* |f none found, block is captured

 Scoring: Search from each Empty point on the board to find Black or White stones

* Superko detected by storing all previous positions



Tracking Blocks

Searching for liberties after every stone means recomputing blocks & liberties
What if we instead trackeaq:
* Which block a point belongs to
* \Which liberties the block has
Then, after placing a stone:
1. Check if we've removed the last liberty of any adjacent block
2. Add the new stone to the appropriate block(s)
This is exactly the approach taken in example code hexgo/stone_board.py

Key component: Union-Find datastructure for tracking blocks



Union-FiNnd Datastructure

A Union-Find datastructure tracks a partition of a set of items
* |.e., each item belongs to exactly one group
 For Go (and Hex): ltems are the points, and groups are the blocks

We represent each group as a tree of items
* Each item has a single parent
 The "name” of the group Is the root of its tree

Initially, each item is in its own singleton group
* Question: \What should the parent be set to for each item initially”?

Find(item) operation: returns the group that item belongs to

Union(group |, group2) operation: Merges group| and group?2 into a single group



Example: Groups representation

Questions

1. What group does
node 2 belong to?

\What about node 57
Node 37
Node 67

Node 117

open o= e

What procedure
should we follow to
answer these
guestions”?




Union-FIind Implementation

* |n hexgo/stone_board.py, track one parent for each point: Questions
self.parents = {} # point -> parents in block 1 What is the worst-case
 To find the block that a point belongs to, follow parents until you find an item that time complexity of find?
S Iits own parent: -
class UF- A 2. What happeng | wg cal
def find(parents, x): . union on two items In the
while x != parents[x]: OXOMN O same group?
X = parents[x] o |
return x 3. What is the worst-case
* [o combine the groups that items x and y belong to, make one of the roots point time complexity of
to the other one: union”
deff”'O”(Pare”ts’ xY): / 4. Could we do better?
x = UFEfind(parents, x) ©
y = UEfind(parents, y)
parents[y] = x # x is root of merged trees L ©

return X,y



Union-Find Optimizations

1. Make trees shallow during find:

e Update each parent along search path to point to

root

2. Union by rank:

e Store an upper bound on a tree's height as rank 64

* Larger rank tree becomes parent during union

f both have same rank, choose arbitrarily and

INcrement new root's rank

d@’%

def find(parents, x):
if x == parents[x]:
return X

parents[x] = find(parents, parents[x])
return parents|[x]

def union(parents, ranks, x, y):
x = find(parents, x)
y = find(parents, y)

if ranks[x] == ranks|[y]:
parents[x] =
ranks[y] = ranks[y] + |
elif ranks[x] < ranks[y]:
parents[x] =
else:
parents[y] = x



hexgo/stone_board.py

Track groups and liberties instead of searching after each move: Union to update block membership:

self.stones = [set(), set()] # start with empty board def merge_blocks(self, P q):
selfnbrs  ={} # point -> neighbors proot, qroot = UEU“'On(Self-Pa".entS’.P’ q)
self liberties = {} # point -> liberties self.liberties[proot].update(self.liberties[qroot])

self.parents ={} # point -> parents in block self.liberties[proot] -= {q}

Find to update block liberties:
def remove_liberties(self, p, q):
proot = UEfind(self.parents, p)
groot = UFfind(self.parents, q)
self.liberties[proot] -= {q}
self.liberties[qroot] -= {q}

Use find and union to update tracking after each move:

def add stone(self, color, point):
self.stones[color].add(point)
self.blocks[point].add(point)

for n in self.nbrs[point]:
if n in self.stones[color]: # same-color nbr
self. merge_blocks(n, point)
if n in self.stones[Cell.opponent(color)]: # opponent nbr
self.remove_liberties(n, point)



Example: Union-Find Operations in Go

Slack stone on 6

& @ * White stone on 3
e Black stone on 9
@ @ 6> @ e \White stone on 4




Example: Union-Find Operations in Go

©
©

Slack stone on 6

6 @ * White stone on 3
e Black stone on 9
€ @ @ e \White stone on 4

e Black stone on 5



Example: Union-Find Operations in Go

e Black stone on 6

@ * White stone on 8
(‘b * Black stone on 9

e @ * White stone on 4
@ € @ @ * Black stone on 5

White stone on O

e Black stone on 1

e (O's block's liberties become
empty



Summary

* Union-Find datastructure is an efficient way to track block memlbership over time
* Nalve Implementation can have poor worst-case performance

e Optimization: update pointers to be shallow during find

* Optimization: keep trees as short as possible during union
* hexgo/Stone_ board.py implementation:

* Track blocks in union-find datastructure

* [rack each block's liberties In a set

* List of each block's neighbours in a lookup table



