
Go: Union-Find Datastructure
CMPUT 355: Games, Puzzles, and Algorithms

Lecture Outline
1. Logistics & Recap
2. Union-Find datastructure
3. Using Union-Find datastructures in Go environments

Logistics
• TA Office hours: Every Thursday from 1:00pm-2:00pm in UCOMM 3-136

• Drop in basis; just show up and ask questions
• Starting this week (tomorrow)

• Practice quiz questions: Released this Friday (Jan 16)
• Answers released Tuesday (Jan 20)

• Quiz 1: Friday, Jan 23
• In-class, full 50 minutes
• No need to email if you have to miss it; up to 3 replaced by final exam automatically
• Questions will be very similar to practice questions
• (at least 3 will be suspiciously similar!)

Recap: Go Implementation Issues
We looked at how the go/go_helper.py program implements a Go environment:

• Board represented as a 1-dimensional array of points
• For an -row, -column board,

Point at row and column is stored at index
• Guarded representation adds one column and two rows of "guards"

• Every point now has exactly 4 neighbours
• Capture is computed by searching the neighbours of a newly-placed stone

• Follow all neighbours of same colour looking for an Empty point
• if none found, block is captured

• Scoring: Search from each Empty point on the board to find Black or White stones
• Superko detected by storing all previous positions

M N
r c rN + c

Tracking Blocks
• Searching for liberties after every stone means recomputing blocks & liberties
• What if we instead tracked:

• Which block a point belongs to
• Which liberties the block has

• Then, after placing a stone:
1. Check if we've removed the last liberty of any adjacent block
2. Add the new stone to the appropriate block(s)

• This is exactly the approach taken in example code hexgo/stone_board.py
• Key component: Union-Find datastructure for tracking blocks

Union-Find Datastructure
• A Union-Find datastructure tracks a partition of a set of items

• I.e., each item belongs to exactly one group
• For Go (and Hex): Items are the points, and groups are the blocks

• We represent each group as a tree of items
• Each item has a single parent
• The "name" of the group is the root of its tree

• Initially, each item is in its own singleton group
• Question: What should the parent be set to for each item initially?

• Find(item) operation: returns the group that item belongs to
• Union(group1, group2) operation: Merges group1 and group2 into a single group

Example: Groups representation

2

8

1

5

3

4 7 9

6

10
11

Questions

1. What group does
node belong to?

2. What about node ?

3. Node

4. Node ?

5. Node ?

6. What procedure
should we follow to
answer these
questions?

2

5

3?

6

11

• In hexgo/stone_board.py, track one parent for each point:
 self.parents = {} # point -> parents in block
• To find the block that a point belongs to, follow parents until you find an item that

is its own parent:
 class UF:
 def find(parents, x):
 while x != parents[x]:
 x = parents[x]
 return x

• To combine the groups that items x and y belong to, make one of the roots point
to the other one:

 def union(parents, x, y):
 x = UF.find(parents, x)
 y = UF.find(parents, y)
 parents[y] = x # x is root of merged trees
 return x, y

Union-Find Implementation
Questions

1. What is the worst-case
time complexity of find?

2. What happens if we call
union on two items in the
same group?

3. What is the worst-case
time complexity of
union?

4. Could we do better?

8

7 9

6

10

2

1

5

3

4

Union-Find Optimizations
1. Make trees shallow during find:

• Update each parent along search path to point to
root

2. Union by rank:
• Store an upper bound on a tree's height as rank
• Larger rank tree becomes parent during union
• If both have same rank, choose arbitrarily and

increment new root's rank

8

7

9

6

10

def find(parents, x):
 if x == parents[x]:
 return x
 parents[x] = find(parents, parents[x])
 return parents[x]

1

5

3

4

1

5

3

4

def union(parents, ranks, x, y):
 x = find(parents, x)
 y = find(parents, y)

 if ranks[x] == ranks[y]:
 parents[x] = y
 ranks[y] = ranks[y] + 1
 elif ranks[x] < ranks[y]:
 parents[x] = y
 else:
 parents[y] = x

hexgo/stone_board.py
Track groups and liberties instead of searching after each move:
 self.stones = [set(), set()] # start with empty board
 self.nbrs = {} # point -> neighbors
 self.liberties = {} # point -> liberties
 self.parents = {} # point -> parents in block

Use find and union to update tracking after each move:
def add_stone(self, color, point):
 self.stones[color].add(point)
 self.blocks[point].add(point)

 for n in self.nbrs[point]:
 if n in self.stones[color]: # same-color nbr
 self.merge_blocks(n, point)
 if n in self.stones[Cell.opponent(color)]: # opponent nbr
 self.remove_liberties(n, point)

Union to update block membership:
 def merge_blocks(self, p, q):
 proot, qroot = UF.union(self.parents, p, q)
 self.liberties[proot].update(self.liberties[qroot])
 self.liberties[proot] -= {q}

Find to update block liberties:
 def remove_liberties(self, p, q):
 proot = UF.find(self.parents, p)
 qroot = UF.find(self.parents, q)
 self.liberties[proot] -= {q}
 self.liberties[qroot] -= {q}

4

Example: Union-Find Operations in Go

8 119 10

4 75 6

0 31 2

9

6

8

• Black stone on 6
• White stone on 8
• Black stone on 9
• White stone on 4

5

Example: Union-Find Operations in Go

8 119 10

4 75 6

0 31 2

• Black stone on 6
• White stone on 8
• Black stone on 9
• White stone on 4
• Black stone on 5

0

Example: Union-Find Operations in Go

8 119 10

4 75 6

0 31 21

• Black stone on 6
• White stone on 8
• Black stone on 9
• White stone on 4
• Black stone on 5
• White stone on 0
• Black stone on 1

• 0's block's liberties become
empty

Summary
• Union-Find datastructure is an efficient way to track block membership over time
• Naive implementation can have poor worst-case performance

• Optimization: update pointers to be shallow during find
• Optimization: keep trees as short as possible during union

• hexgo/Stone_board.py implementation:
• Track blocks in union-find datastructure
• Track each block's liberties in a set
• List of each block's neighbours in a lookup table

