Implementing Go Environments

CMPUT 355: Games, Puzzles, and Algorithms




Recap: [romp-laylor Rules

. Go Is played on a 19x19 (or other dimension) grid by Black & White

2. Each point on the grid may be coloured Black, White, or Empty

3. A point P, not coloured C, reaches C if there is a path of nodes of P's colour from P to a point of

S

3.

9.

colour C

Clearing a colour means setting all nodes of that colour that do not reach Empty to Empty
Starting from an empty grid, the players alternate turns, starting with Black

A turn is either a Pass, or a move that does not repeat an earlier grid colouring

A move consists of (1) colouring an empty point one's own colour (2) Clearing the opponent's colour (3)
clearing one's own colour

The game ends after two consecutive Passes
A player's score Is the number of points of her colour, plus the empty points that reach only her colour

10. The player with the higher score at the end of the game is the winner. Equal scores result in a tie.



| ecture Outline

1. Recap
2. Go implementation issues

3. Example code walkthrough



Representing the Boaro

1.

Go Is played on a square grid of points, by two players called

Slack and White.

 A'grid" is a graph in which each node has vertical and horizontal neighbours

e Question: How should we implement a board in

* |.e., what data structure to hold the current colouring”
e A2

e Questions:

D array makes a lot of sense

e How do you represent a 2

D array In

* \Would that have any drawbacks”

* Are there any alternatives”

Python?

Python?




Nelghbours

3. A point P, not coloured C, reaches C if there is a path of nodes of P's colour from
P to a point of colour C

Questions:
1. How many neighbours does each point have”
2. Why might we need to iterate over the neighlbbours of a point?

3. How can we iterate over the neighbours of a point in our boarad
representation’?

4, |s it possible to iterate over the neighbours of a point without
checking for the edge of the board?

* \Why might that be desirable”



Guarded Board Format

3. A point P, not coloured C, reaches C if there is a path of nodes of P's colour from
P to a point of colour C

e Scoring requires us to check if an Empty point reaches Black OO0 00O
points and White points ~

O—0O—~C
» Capture detection requires us to check if a {Black, White} ~ ‘.‘. ~
point reaches an Empty point ..
* Neither of these operations will behave differently if we @ On®

surround the grid with points of a fourth colour (why?) ONONONONO

* S0 long as we always start from a "real” point, we can then
iterate over exactly four neighbours for all reachability
operations




Captures

3. A point P, not coloured C, reaches C if there is a path of nodes of P's colour from
P to a point of colour C

4. Clearing a colour means setting all nodes of that colour that do not reach Empty
to Empty

Recall that a stone is captured if it is removed by clearing the opponent's colour after a
move.

Questions:

 How should we detect captures after a move?

* Do we need to check every point on the grid? (why?)



—xample Walkthrough: go_helper.py

/. A move consists of
1. colouring an empty point one's own colour
2. Clearing the opponent's colour (i.e., detecting capture)

3. Clearing one's own colour (i.e., detecting suicide)

1. Clone the repository:
git clone https://github.com/jrwright/games-puzzles-algorithms.git

2. Understand how go/go_helper.py does each of the following:
* Represents the board
* Checks for capture
* Checks for superko
e Performs a specified move
 Computes the Tromp-Taylor score



https://github.com/jrwright/games-puzzles-algorithms.git

Summary

* (Guarded board representation simplifies neighbour checking

* Walked through straightforward implementation of Tromp-Taylor rules in
go/go_helper.py



