
Implementing Go Environments
CMPUT 355: Games, Puzzles, and Algorithms

Recap: Tromp-Taylor Rules
1. Go is played on a 19x19 (or other dimension) grid by Black & White
2. Each point on the grid may be coloured Black, White, or Empty
3. A point , not coloured , reaches if there is a path of nodes of 's colour from to a point of

colour
4. Clearing a colour means setting all nodes of that colour that do not reach Empty to Empty
5. Starting from an empty grid, the players alternate turns, starting with Black
6. A turn is either a Pass, or a move that does not repeat an earlier grid colouring
7. A move consists of (1) colouring an empty point one's own colour (2) Clearing the opponent's colour (3)

clearing one's own colour
8. The game ends after two consecutive Passes
9. A player's score is the number of points of her colour, plus the empty points that reach only her colour
10.The player with the higher score at the end of the game is the winner. Equal scores result in a tie.

P C C P P
C

Lecture Outline
1. Recap
2. Go implementation issues
3. Example code walkthrough

Representing the Board

• Question: How should we implement a board in Python?
• i.e., what data structure to hold the current colouring?

• A 2D array makes a lot of sense
• Questions:

• How do you represent a 2D array in Python?
• Would that have any drawbacks?
• Are there any alternatives?

1. Go is played on a square grid of points, by two players called Black and White.
• A "grid" is a graph in which each node has vertical and horizontal neighbours

Neighbours

Questions:
1. How many neighbours does each point have?
2. Why might we need to iterate over the neighbours of a point?
3. How can we iterate over the neighbours of a point in our board

representation?
4. Is it possible to iterate over the neighbours of a point without

checking for the edge of the board?
• Why might that be desirable?

3. A point , not coloured , reaches if there is a path of nodes of 's colour from
 to a point of colour

P C C P
P C

Guarded Board Format

• Scoring requires us to check if an Empty point reaches Black
points and White points

• Capture detection requires us to check if a {Black, White}
point reaches an Empty point

• Neither of these operations will behave differently if we
surround the grid with points of a fourth colour Guard (why?)

• So long as we always start from a "real" point, we can then
iterate over exactly four neighbours for all reachability
operations

3. A point , not coloured , reaches if there is a path of nodes of 's colour from
 to a point of colour

P C C P
P C

Captures

Recall that a stone is captured if it is removed by clearing the opponent's colour after a
move.
Questions:

• How should we detect captures after a move?
• Do we need to check every point on the grid? (why?)

3. A point , not coloured , reaches if there is a path of nodes of 's colour from
 to a point of colour

4. Clearing a colour means setting all nodes of that colour that do not reach Empty
to Empty

P C C P
P C

Example Walkthrough: go_helper.py

1. Clone the repository:
git clone https://github.com/jrwright/games-puzzles-algorithms.git

2. Understand how go/go_helper.py does each of the following:
• Represents the board
• Checks for capture
• Checks for superko
• Performs a specified move
• Computes the Tromp-Taylor score

7. A move consists of
1. colouring an empty point one's own colour
2. Clearing the opponent's colour (i.e., detecting capture)
3. Clearing one's own colour (i.e., detecting suicide)

https://github.com/jrwright/games-puzzles-algorithms.git

Summary

• Guarded board representation simplifies neighbour checking
• Walked through straightforward implementation of Tromp-Taylor rules in

go/go_helper.py

