
Course Overview
CMPUT 355: Games, Puzzles, and Algorithms



Games, Puzzles, and Algorithms
• Introduction to the algorithms and theory behind programs that solve puzzles and 

games 
• Puzzles: Find a sequence of actions to transform a starting position to a goal 

position 
• Key technique: search 
• Broadly applicable to non-game problems too (circuit layout, route finding, etc.) 

• Games: An opponent gets to choose some of the actions 
• Search is still the key technique 
• But need to somehow account for the other player's moves



Why Games?
• Games are a classic artificial intelligence challenge problem 

• Reasoning about an opponent is hard! 
• Many AI advances start with game applications 

• Strategic reasoning is important 
• Strategic interactions are fundamentally different from single-agent interations 
• In applications, frequently need to account for other agents 
• Real situations are often competitive 

• Games are fun!



About Me

James R. Wright               https://jrwright.info 
• Associate Professor of Computing Science 
• Amii Fellow 
• Research at intersection of: 

1. Strategic Interactions 
2. Machine Learning 
3. Behavioral Modeling

https://jrwright.info


Lecture Outline

1. Course Logistics 
2. Course Topics

After this lecture, you should be able to: 
• Understand the policies and procedures of the course 
• Describe the basic overview of the course material 
• Decide whether you want to take the course



Course Essentials
Course information: https://jrwright.info/gpaclass/ 

• This is the main source of class information 
• Syllabus, slides, practice quizzes, deadlines 

Lectures: Mondays, Wednesdays, Fridays 4:00-4:50pm in CCIS L2-190 
• In person 

Canvas: https://canvas.ualberta.ca/courses/32227 
• Discussion forum for questions about course material 

Email: james.wright@ualberta.ca for private questions 
• If you ask about course material by email I will redirect you to the discussion forum 

Office hours: After lecture, or by appointment 

https://jrwright.info/gpaclass/
https://canvas.ualberta.ca/courses/32227
mailto:james.wright@ualberta.ca


Evaluation
Grade breakdown 

• Final exam: 35% 
• Five in-class quizzes: 65% (13% per quiz) 

• Approximately every 2 weeks (see the schedule for exact dates) 
Missed quizzes 

• You can miss up to 3 quizzes for any reason  
(no need to email or request EA) 

• Weight of first 3 missed quizzes replaced with final exam mark 
• Any additional missed quizzes get a mark of 0 
• More than 2 missed quizzes may preclude a deferred final exam

https://jrwright.info/gpaclass/schedule


Quizzes
• There will be five quizzes 
• About a week before each quiz, I will post practice questions on the course website 

(with answers shortly afterward) 
• The quizzes are in-class and closed book 
• Types of questions: 

• Apply definitions and/or game rules 
• Compute quantities defined in class (e.g., minimax value) 
• Trace the execution of an algorithm discussed in class 
• Fill in missing code fragments 

• Grades will be posted on Canvas

https://jrwright.info/gpaclass/resources
https://canvas.ualberta.ca/courses/32227


Academic Conduct
• Submitting someone else's work as your own is plagiarism. 
• So is helping someone else to submit your work as their own. 
• We report all cases of academic misconduct to the university. 
• The university takes academic misconduct very seriously.   

Possible consequences: 
• Zero on the quiz or exam (virtually guaranteed) 
• Zero for the course 
• Permanent notation on transcript 
• Suspension or expulsion from the university



Prerequisites

• Formally: Any 200-level Computing Science course 
• Comfort with Python 

• You don't need to be an expert programmer 
• But a lot of the course will involve exploring and understanding code 

• Comfort with or interest in formal mathematical/algorithmic reasoning  
• We will reason about performance of algorithms, properties of 

data structures



Example code

• Much of the class will involve understanding example code 
• This example code is available in a github repository 

• (forked from Ryan Hayward's original repository) 
• Code is straightforward Python 3 
• To clone the repository: 

git clone https://github.com/jrwright/games-puzzles-algorithms.git

https://github.com/jrwright/games-puzzles-algorithms
https://github.com/ryanbhayward/games-puzzles-algorithms


Course Topics

Typical topic structure: 
1. Example game(s) or puzzle(s) 
2. Issue illustrated by the game, e.g.: 

• Positions vs states 
• Evaluating rules 
• Measuring position strength 

3. Example code walkthrough, demo 



1. Group-based rules 
Example games: Go, Hex 
• Go is a popular territory-capturing game 

• Similar to game of life: stones with no "breathing room" die (are 
captured) 

• Different: breathing room is calculated for contiguous groups, 
not for individual stones 

• Hex is a game where players try to connect their own two sides 
with a path of contiguous stones 

• Surprisingly nontrivial to efficiently compute Go captures and Hex 
win conditions 

• Evaluate alternative algorithms and data structures

A

B



2. Brute-force and heuristic search
Example puzzles: Road maps and sliding tile puzzle 
• Many problems representable as states that are modified by actions 

• E.g., locations in a road network; arrangements of tiles 
• Can represent the problem as a graph of states 

• States ,  adjacent if a single action in  changes the state to  
• Can solve an instance of a puzzle by finding a path from start state to a 

solution state 
• E.g., path from start location to destination  
• E.g., sequence of moves from a scrambled start position to 

properly ordered 
• Heuristic information can help search the graph more efficiently
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3. Minimax and alpha-beta search
Example game: Tic-tac-toe 
• Games are fundamentally different from puzzles 

• Can't specify a full path, because opponent picks half the edges 
• Question: How can search work in this setting?  What is a solution? 
• Solution if you can force a win no matter what the opponent does 
• Minimax search: Inductive procedure to compute whether a position is a 

win (self can force a win), a loss (opponent can force a win), or neither 
• Alpha-beta search: Procedure for pruning (i.e., not searching) subtrees 

that provably  "don't matter" in a specific sense
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4. Dynamic programming
Example game: Nim 

• Each turn: remove any number of stones from a single heap 
• Player who removes the last stone wins 

• Tic-tac-toe is solvable by brute force, because there are not that many paths 
to check 

• Most games have exponentially many paths to evaluate 
• Exhaustive search is doomed, even with alpha-beta pruning 

• Idea: Cache the results for previously-encountered positions (memoization) 
• Even better: Evaluate positions in a carefully chosen order to maximize 

benefits of caching (dynamic programming)



5. Domain-specific pruning

Example games: Hex, tic-tac-toe, Nim 
• Specific games have specific structure  
• Sometimes can look at a position and easily tell if it's a win/loss/tie 

• E.g., this tic-tac-toe position 
• Can tell if a Nim position is a loss just by doing some arithmetic! 

• This can be used for pruning 
• If a state is provably a win, just mark it as a win, no need to 

actually search to the end
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6. Monte Carlo tree search
Example game: Hex 
• A game is solved if some strategy is known to guarantee a win or draw for one player 

• i.e., must be able to prove that each move is a winning move no matter what the 
opponent does 

• But a proof often requires searching the whole state graph (infeasible for Chess, Go, 
11x11 Hex, etc.) 

• Question: what can we do if we don't have time to search the whole tree? 
• Monte Carlo tree search explores the state graph efficiently by using simulations 

("roll-outs") to evaluate intermediate states 
• More promising subtrees are searched more intensively 

• Doesn't necessarily solve the game, but often plays quite effectively



7. Noncooperative game theory
Example game: rock-paper-scissors  
• Most of this course:  

• players choose actions sequentially 
• the state of the game is fully known by all players 
• one player's win is another player's loss 

• Noncooperative game theory relaxes these assumptions 
• Players may have to move simultaneously (rock-paper-scissors) 
• Players may not know the current state of the game (Stratego, poker) 
• "Win-win" and "lose-lose" outcomes may exist (Prisoner's Dilemma)  

• Question: What is even an optimal strategy for these games?



Summary
• Course information: https://jrwright.info/gpaclass/ 

• Evaluation: All in-person (in-class quizzes and a final exam) 

• Topics: Algorithmic issues and techniques for solving games and puzzles 

1. Evaluating group-based position rules 

2. Search with and without heuristics for single-player puzzles 

3. Minimax and alpha-beta search for two-player perfect-information alternating-move 
games 

4. Dynamic programming for minimax search 

5. Domain-specific pruning for minimax search 

6. Monte Carlo tree search 

7. Noncooperative game theory for simultaneous-move games

https://jrwright.info/gpaclass/

