Course Overview

CMPUT 355: Games, Puzzles, and Algorithms

Games, Puzzles, and Algorithms

Introduction to the algorithms and theory behind programs that solve puzzles and
games

Puzzles: Find a sequence of actions to transform a starting position to a goal
position

 Key technique: search

» Broadly applicable to non-game problems too (circuit layout, route finding, etc.)
Games: An opponent gets to choose some of the actions

 Search is still the key technique

 But need to somehow account for the other player's moves

Why Games”?

 (Games are a classic artificial intelligence challenge problem
e Reasoning about an opponent is hard!
 Many Al advances start with game applications

o Strategic reasoning is important

e Strategic interactions are fundamentally different from single-agent interations
* |n applications, frequently need to account for other agents
* Real situations are often competitive

e (Games are fun!

About Me

James R. Wright https://jrwright.info

* Associate Professor of Computing Science

e Amil Fellow
e Research at intersection of:
1. Strategic Interactions

2. Machine Learning

3. Behavioral Modeling

https://jrwright.info

| ecture Outline

1. Course Logistics

2. Course Topics

After this lecture, you should be able to:

 Understand the policies and procedures of the course

e Describe the basic overview of the course material

* Decide whether you want to take the course

Course Essentials

Course information: https://[rwright.info/gpaclass/
* [his is the main source of class information
o Svyllabus, slides, practice quizzes, deadlines

Lectures: Mondays, Wednesdays, Fridays 4:00-4:50pm in CCIS L2-190
* |n person

Canvas: https://canvas.ualberta.ca/courses/32227
* Discussion forum for guestions about course material

Email: james.wright@Qualberta.ca for private questions
e |f you ask about course material by email | will redirect you to the discussion forum

Office hours: After lecture, or by appointment

https://jrwright.info/gpaclass/
https://canvas.ualberta.ca/courses/32227
mailto:james.wright@ualberta.ca

Evaluation

Grade breakdown
o Final exam: 35%
* Five in-class quizzes: 65% (13% per quiz)
* Approximately every 2 weeks (see the schedule for exact dates)

Missed quizzes

* You can miss up to 3 quizzes for any reason
(N0 need to emall or request EA)

* Weight of first 3 missed quizzes replaced with final exam mark
* Any additional missed quizzes get a mark of O
 More than 2 missed quizzes may preclude a deferred final exam

https://jrwright.info/gpaclass/schedule

Quizzes

There will be five quizzes

About a week before each quiz, | will post practice questions on the course website
(with answers shortly afterward)

The quizzes are in-class and closed book

Types of questions:
* Apply definitions and/or game rules
e Compute gquantities defined in class (e.g., minimax value)
* Jrace the execution of an algorithm discussed In class
* Hill iIn missing code fragments

Grades will be posted on Canvas

https://jrwright.info/gpaclass/resources
https://canvas.ualberta.ca/courses/32227

Academic Conduct

Submitting someone else's work as your own is plagiarism.
S0 IS helping someone else to submit your work as their own.
We report all cases of academic misconduct to the university.

The university takes academic misconduct very seriously.
Possible consequences:

o Zero on the quiz or exam (virtually guaranteed)

e /ero for the course

* Permanent notation on transcript

e Suspension or expulsion from the university

Prerequisites

 Formally: Any 200-level Computing Science course
* Comfort with Python

* You don't need to be an expert programmer

e But alot of the course will involve exploring and understanding code
 Comfort with or interest in formal mathematical/algorithmic reasoning

* We will reason about performance of algorithms, properties of
data structures

Example code

Much of the class will involve understanding example code

This example code is available in a github repository

» (forked from Ryan Hayward's original repository)

Code is straightforward Python 3

o clone the repository:

git clone https://github.com/jrwright/games-puzzles-algorithms.git

https://github.com/jrwright/games-puzzles-algorithms
https://github.com/ryanbhayward/games-puzzles-algorithms

Course Topics

Typical topic structure:

1. Example game(s) or puzzle(s)

2. Issue lllustrated by the game, e.q.:
* Positions vs states
e Evaluating rules

* Measuring position strength

3. Example code walkthrough, demo

1. Group-based rules

Example games: Go, Hex

(GO is a popular territory-capturing game

« Similar to game of life: stones with no "breathing room" die (are
captured)

» Different: breathing room is calculated for contiguous groups,
not for individual stones

 Hex is a game where players try to connect their own two sides
with a path of contiguous stones

o Surprisingly nontrivial to efficiently compute Go captures and Hex
win conditions

e Evaluate alternative algorithms and data structures

2. Brute-torce and heuristic search

Example puzzles: Road maps and sliding tile puzzle

Many problems representable as states that are modified by actions

 E.g., locations in a road network; arrangements of tiles
Can represent the problem as a graph of states

« States §¢, §, adjacent if a single action in sy changes the state to §,

Can solve an instance of a puzzle by finding a path from start state to a
solution state

* E.Q., path from start location to destination

 E£.9., sequence of moves from a scrambled start position to
properly ordered

Heuristic information can help search the graph more efficiently

12

10

11

13

14

15

12

3. Minimax and alpha-beta search

Example game: Tic-tac-toe

Games are fundamentally di

X|0|X

ferent from puzzles O O X

o (Can't specify a full path, because opponent picks half the edges

Question: How can search work in this setting? What is a solution?

Solution if you can force a win no matter what the opponent does

Minimax search: Inductive procedure to compute whether a position is a
win (self can force a win), a loss (opponent can force a win), or neither

Alpha-beta search: Proced
that provably "don't matter”

Ure for pr
N a Spec

uning (i.e., not searching) subtrees
fic sense

4. Dynamic programming

Example game: Nim
e Each turn: remove any number of stones from a single heap §

e Player who removes the last stone wins

e J[ic-tac-toe is solvable by brute force, because there are not that many paths
to check

 Most games have exponentially many paths to evaluate

* Exhaustive search is doomed, even with alpha-beta pruning
e [dea: Cache the results for previously-encountered positions (memoization)

 Even better: Evaluate positions in a carefully chosen order to maximize
benefits of caching (dynamic programming)

5. Domain-specific pruning

X1 X[O
0|0 X

e Specific games have specific structure X

Example games: Hex, tic-tac-toe, Nim

e Sometimes can look at a position and easily tell if it's a win/loss/tie

* E.g., this tic-tac-toe position
 Can tell if a Nim position is a loss just by doing some arithmetic!

e [his can be used for pruning

e |f a state is provably a win, just mark it as a win, no need to
actually search to the end

6. Monte Carlo tree search

Example game: Hex

A game is solved If some strategy is known to guarantee a win or draw for one player

°* [.&., MUS

opponer

' e able to prove that each move is a winning move no matter what the

t does

* But a proof often requires searching the whole state graph (infeasible for Chess, Go,
11x11 Hex, etc.)

e Question: what can we do if we don't have time to search the whole tree?

* Monte Carlo tree search explores the state graph efficiently by using simulations
("roll-outs") to evaluate intermediate states

* More promising subtrees are searched more intensively

* Doesn't necessarily solve the game, but often plays quite effectively

/. Noncooperative game theory

Example game: rock-paper-scissors

* Most of this course:
e players choose actions seqguentially
* the state of the game is fully known by all players
* oOne player's win is another player's loss

* Noncooperative game theory relaxes these assumptions

 Players may have to move simultaneously (rock-paper-scissors)

* Players may not know the current state of the game (Stratego, poker)

 "Win-win" and "lose-lose" outcomes may exist (Prisoner's Dilemma)

* Question: \What is even an optimal strategy for these games”?

Summary

 Course information: https.//[rwright.info/gpaclass/

 Evaluation: All in-person (in-class quizzes and a final exam)

* Topics: Algorithmic issues and techniques for solving games and puzzles

1. Evaluating group-based position rules

2. Search with and without heuristics for single-player puzzles

o0

Minimax and alpha-beta search for two-player perfect-information alternating-move
games

Dynamic programming for minimax search
Domain-specific pruning for minimax search

Monte Carlo tree search

~N O O A

Noncooperative game theory for simultaneous-move games

https://jrwright.info/gpaclass/

