
Course Overview
CMPUT 355: Games, Puzzles, and Algorithms

Games, Puzzles, and Algorithms
• Introduction to the algorithms and theory behind programs that solve puzzles and

games
• Puzzles: Find a sequence of actions to transform a starting position to a goal

position
• Key technique: search
• Broadly applicable to non-game problems too (circuit layout, route finding, etc.)

• Games: An opponent gets to choose some of the actions
• Search is still the key technique
• But need to somehow account for the other player's moves

Why Games?
• Games are a classic artificial intelligence challenge problem

• Reasoning about an opponent is hard!
• Many AI advances start with game applications

• Strategic reasoning is important
• Strategic interactions are fundamentally different from single-agent interations
• In applications, frequently need to account for other agents
• Real situations are often competitive

• Games are fun!

About Me

James R. Wright https://jrwright.info
• Associate Professor of Computing Science
• Amii Fellow
• Research at intersection of:

1. Strategic Interactions
2. Machine Learning
3. Behavioral Modeling

https://jrwright.info

Lecture Outline

1. Course Logistics
2. Course Topics

After this lecture, you should be able to:
• Understand the policies and procedures of the course
• Describe the basic overview of the course material
• Decide whether you want to take the course

Course Essentials
Course information: https://jrwright.info/gpaclass/

• This is the main source of class information
• Syllabus, slides, practice quizzes, deadlines

Lectures: Mondays, Wednesdays, Fridays 4:00-4:50pm in CCIS L2-190
• In person

Canvas: https://canvas.ualberta.ca/courses/32227
• Discussion forum for questions about course material

Email: james.wright@ualberta.ca for private questions
• If you ask about course material by email I will redirect you to the discussion forum

Office hours: After lecture, or by appointment

https://jrwright.info/gpaclass/
https://canvas.ualberta.ca/courses/32227
mailto:james.wright@ualberta.ca

Evaluation
Grade breakdown

• Final exam: 35%
• Five in-class quizzes: 65% (13% per quiz)

• Approximately every 2 weeks (see the schedule for exact dates)
Missed quizzes

• You can miss up to 3 quizzes for any reason
(no need to email or request EA)

• Weight of first 3 missed quizzes replaced with final exam mark
• Any additional missed quizzes get a mark of 0
• More than 2 missed quizzes may preclude a deferred final exam

https://jrwright.info/gpaclass/schedule

Quizzes
• There will be five quizzes
• About a week before each quiz, I will post practice questions on the course website

(with answers shortly afterward)
• The quizzes are in-class and closed book
• Types of questions:

• Apply definitions and/or game rules
• Compute quantities defined in class (e.g., minimax value)
• Trace the execution of an algorithm discussed in class
• Fill in missing code fragments

• Grades will be posted on Canvas

https://jrwright.info/gpaclass/resources
https://canvas.ualberta.ca/courses/32227

Academic Conduct
• Submitting someone else's work as your own is plagiarism.
• So is helping someone else to submit your work as their own.
• We report all cases of academic misconduct to the university.
• The university takes academic misconduct very seriously.

Possible consequences:
• Zero on the quiz or exam (virtually guaranteed)
• Zero for the course
• Permanent notation on transcript
• Suspension or expulsion from the university

Prerequisites

• Formally: Any 200-level Computing Science course
• Comfort with Python

• You don't need to be an expert programmer
• But a lot of the course will involve exploring and understanding code

• Comfort with or interest in formal mathematical/algorithmic reasoning
• We will reason about performance of algorithms, properties of

data structures

Example code

• Much of the class will involve understanding example code
• This example code is available in a github repository

• (forked from Ryan Hayward's original repository)
• Code is straightforward Python 3
• To clone the repository:

git clone https://github.com/jrwright/games-puzzles-algorithms.git

https://github.com/jrwright/games-puzzles-algorithms
https://github.com/ryanbhayward/games-puzzles-algorithms

Course Topics

Typical topic structure:
1. Example game(s) or puzzle(s)
2. Issue illustrated by the game, e.g.:

• Positions vs states
• Evaluating rules
• Measuring position strength

3. Example code walkthrough, demo

1. Group-based rules
Example games: Go, Hex
• Go is a popular territory-capturing game

• Similar to game of life: stones with no "breathing room" die (are
captured)

• Different: breathing room is calculated for contiguous groups,
not for individual stones

• Hex is a game where players try to connect their own two sides
with a path of contiguous stones

• Surprisingly nontrivial to efficiently compute Go captures and Hex
win conditions

• Evaluate alternative algorithms and data structures

A

B

2. Brute-force and heuristic search
Example puzzles: Road maps and sliding tile puzzle
• Many problems representable as states that are modified by actions

• E.g., locations in a road network; arrangements of tiles
• Can represent the problem as a graph of states

• States , adjacent if a single action in changes the state to
• Can solve an instance of a puzzle by finding a path from start state to a

solution state
• E.g., path from start location to destination
• E.g., sequence of moves from a scrambled start position to

properly ordered
• Heuristic information can help search the graph more efficiently

s1 s2 s1 s2

1 2

3

4

5 6

7

8

9 10 11

1213 14 15

7 6

12 2

1

3. Minimax and alpha-beta search
Example game: Tic-tac-toe
• Games are fundamentally different from puzzles

• Can't specify a full path, because opponent picks half the edges
• Question: How can search work in this setting? What is a solution?
• Solution if you can force a win no matter what the opponent does
• Minimax search: Inductive procedure to compute whether a position is a

win (self can force a win), a loss (opponent can force a win), or neither
• Alpha-beta search: Procedure for pruning (i.e., not searching) subtrees

that provably "don't matter" in a specific sense

X
X

X

O

O O

X

4. Dynamic programming
Example game: Nim

• Each turn: remove any number of stones from a single heap
• Player who removes the last stone wins

• Tic-tac-toe is solvable by brute force, because there are not that many paths
to check

• Most games have exponentially many paths to evaluate
• Exhaustive search is doomed, even with alpha-beta pruning

• Idea: Cache the results for previously-encountered positions (memoization)
• Even better: Evaluate positions in a carefully chosen order to maximize

benefits of caching (dynamic programming)

5. Domain-specific pruning

Example games: Hex, tic-tac-toe, Nim
• Specific games have specific structure
• Sometimes can look at a position and easily tell if it's a win/loss/tie

• E.g., this tic-tac-toe position
• Can tell if a Nim position is a loss just by doing some arithmetic!

• This can be used for pruning
• If a state is provably a win, just mark it as a win, no need to

actually search to the end

X
X

X
OO

OX

6. Monte Carlo tree search
Example game: Hex
• A game is solved if some strategy is known to guarantee a win or draw for one player

• i.e., must be able to prove that each move is a winning move no matter what the
opponent does

• But a proof often requires searching the whole state graph (infeasible for Chess, Go,
11x11 Hex, etc.)

• Question: what can we do if we don't have time to search the whole tree?
• Monte Carlo tree search explores the state graph efficiently by using simulations

("roll-outs") to evaluate intermediate states
• More promising subtrees are searched more intensively

• Doesn't necessarily solve the game, but often plays quite effectively

7. Noncooperative game theory
Example game: rock-paper-scissors
• Most of this course:

• players choose actions sequentially
• the state of the game is fully known by all players
• one player's win is another player's loss

• Noncooperative game theory relaxes these assumptions
• Players may have to move simultaneously (rock-paper-scissors)
• Players may not know the current state of the game (Stratego, poker)
• "Win-win" and "lose-lose" outcomes may exist (Prisoner's Dilemma)

• Question: What is even an optimal strategy for these games?

Summary
• Course information: https://jrwright.info/gpaclass/

• Evaluation: All in-person (in-class quizzes and a final exam)

• Topics: Algorithmic issues and techniques for solving games and puzzles

1. Evaluating group-based position rules

2. Search with and without heuristics for single-player puzzles

3. Minimax and alpha-beta search for two-player perfect-information alternating-move
games

4. Dynamic programming for minimax search

5. Domain-specific pruning for minimax search

6. Monte Carlo tree search

7. Noncooperative game theory for simultaneous-move games

https://jrwright.info/gpaclass/

