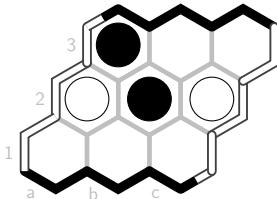
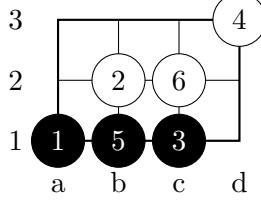


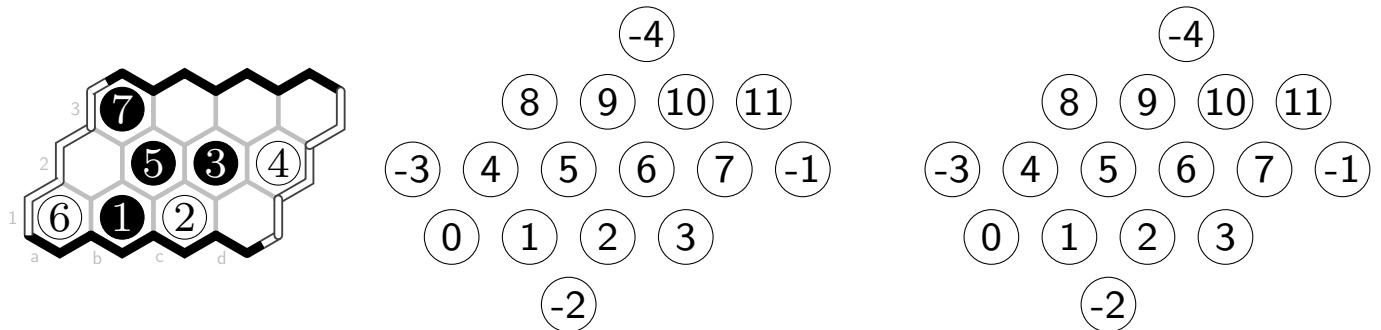
1. Consider the following 4×5 Go position, with White stones at a2, a3, c3, c4, e3 and Black stones at b2, b3, b4, c1, d2, d3, d4, e2.


- (a) Compute the Tromp-Taylor Score for each player.
- (b) Can Black make a move that captures at least one White stone? Give coordinates or explain why not.
- (c) Can White make a move that captures at least one Black stone? Give coordinates or explain why not.
- (d) List all of Black's blocks.
- (e) List all of White's blocks.

2. Consider the following 4×4 Go position after 7 moves, with White stones at b1, b2, c1, d2 and Black stones at b3, b4, c2, c4, d3.


- (a) List the liberties for the block containing c4.
- (b) List the liberties for the block containing c2.
- (c) Suppose that White places a stone at c3. What stones, if any, does it capture?
- (d) Suppose that Black replies by playing a stone at c2. Is this a legal move? Why or why not?
- (e) Would it be legal for Black to reply by playing at d1 instead? Why or why not?

3. Consider the following 3×3 Hex board with White stones at a2, c2 and Black stones at a3, and b2.


- (a) List every move Black could make to win the game.
- (b) Is there *any* sequence of play from this position in which White wins? If so, list the moves in the form “B[a3], W[c2],...”. If not, explain why not.

4. Consider the following position on a 3×4 go board, created by the moves 1.B[a1], 2.W[b2], 3.B[c1], 4.W[d3], 5.B[b1], 6.W[c2]. Assume that neighbours are iterated over in the order above, right, below, left, and that union is implemented without the union-rank optimization.

- (a) Draw the parent pointers for this position on the parent diagram.
- (b) Repeat the question, but assuming that the union-rank optimization is implemented
- (c) Why does the iteration order matter in (a)?
- (d) Does the iteration order matter in (b)? Why or why not?

5. Consider the following position on a 3×4 Hex board, created by the moves 1.B[b1], 2.W[c1], 3.B[c2], 4.W[d2], 5.B[b2], 6.W[a1], 7.B[a3]. Assume that neighbours are iterated over in the order above left, above right, right, below right, below left, left, and that `union` is implemented without the union-rank optimization.

(a) Draw the parent pointers for this position on the parent diagram.
 (b) Repeat the question, but assuming that the union-rank optimization is implemented.

6. The following line is from the hex board initialization in `hexgo/stone_board.py`:

```
self.nbr_offset = ((-1,0),(-1,1),(0,1),(1,0),(1,-1),(0,-1))
```

(a) Explain the purpose of this line.
 (b) Give the corresponding line for initializing a go board.

7. Explain the purpose of line 4 below:

```
1  for r in range(self.r):
2      for c in range(self.c):
3          for (y,x) in self.nbr_offset:
4              if r+y in r_range and c+x in c_range:
5                  self.nbrs[Pt.rc_point(r,c,self.c)].add(Pt.rc_point(r+y,c+x,self.c))
```

8. Explain how the `rc_point` function below works. You may be asked to reproduce it.

```
def rc_point(row, col, num_cols):
    return col + row * num_cols
```

9. In `hexgo/stone_board.py`, explain the purpose of each line of `merge_blocks`:

```
1  def merge_blocks(self, p, q):
2      proot, qroot = UF.union(self.parents, p, q)
3      self.blocks[proot].update(self.blocks[qroot])
4      self.liberties[proot].update(self.liberties[qroot])
5      self.liberties[proot] -= self.blocks[proot]
```

10. Here is a portion of the `tromp_taylor_score` method in `go/go_helper.py`, with two expressions missing.

```
1      while (len(empty_points) > 0):
2          q = empty_points.pop()
3          for j in self.nbr_offsets:
4              x = j + q
5              b_nbr |= (self.brd[x] == BLACK)
6              w_nbr |= (self.brd[x] == WHITE)
7              if self.brd[x] == EMPTY and x not in empty_seen:
8                  empty_seen.add(x)
9                  empty_points.append(x)
10                 territory += 1
11      if      _____expression_(A)_____:
12          bt += territory
13      elif _____expression_(B)_____:
14          wt += territory
```

(a) What should expression (A) and expression (B) be?

The order of the clauses in each expression of course doesn't matter.

(b) Explain the purpose of lines 5 and 6.