
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca

Today’s Topics

Today’s Topics:
• Minimax for win/draw/loss and numeric scores
• Alphabeta

2

Coursework

• Work on Assignment 2
• Deadline extended to Monday Oct 18

• Quiz 5: review minimax search parts 1 and 2.
Double-length quiz

• Deadline extended to Friday Oct 8
• Read Schaeffer et al, Checkers is solved. Science, 2007
• Activities 9

3

Midterm

• The midterm is Oct 12 (one week from today)
• Topics: All material up to and including lecture 10

(Thursday)
• Midterm study guide is available from main course page
• Exam on eclass, similar to quizzes

• 90-minute time limit (modulo user-specific accomodations)
• Opens 12:01am, closes 11:59pm Mountain time
• You must start before 10:29pm if you want the full

90 minutes
• No lecture on Tuesday

4

https://jrwright.info/cmput455/html/midterm-study-guide.html

Minimax and Alphabeta

5

Minimax Search: From Two to Many Different
Outcomes

• Last time: boolean negamax solver
for games with win-loss outcomes

• What about win-loss-draw?
• What about general numeric scores?
• Similar principles

• A little bit more involved
• Remember our setting:

two player zero sum games, no chance element, perfect
information

• Minimax search:
• We maximize score
• Opponent minimizes our score

• Zero-sum: each point we win, the opponent loses

6

OR Node = MAX Node

• Our turn, we maximize
• Example, win-draw-loss game:

• Set win-score > draw-score > loss-score
• For example, can use

win = +1, draw = 0, loss = -1
• OR node n, children c1, ..., ck

• score(n) = max(score(c1), score(c2), ... score(ck))

7

Example: Boolean OR and Maximum of 0, 1

• Example shows equivalence between
• Logical OR
• Taking the maximum of numbers in the set { 0, 1 }

• Booleans
• True = we win
• False = we lose
• win(n) = win(c1) or win(c2) or ... or win(ck)
• win(n) if win(ci) = True for at least one i

• Numbers in the set { 0, 1 }
• 1 = we win
• 0 = we lose
• score(n) = max(score(c1), score(c2), ... score(ck))
• score(n) = 1 if score(ci) = 1 for at least one i

8

MAX Node with Numeric Scores

• Example: MAX node n
• Five children with scores 2, 5, -3, 6, 10
• score(n) = max(2, 5, -3, 6, 10) = 10
• Question: Do we always have to evaluate all children now?

• With scores, usually yes
• We can stop early in two scenarios

• We know the highest possible score,
and one child achieves it
(similar to boolean case)

• We have a bound, and only want to know
if we can reach at least that bound.
Can stop as soon as one child achieves bound

9

MAX Node with Numeric Scores

• Example: MAX node n
• Five children with scores 2, 5, -3, 6, 10
• score(n) = max(2, 5, -3, 6, 10) = 10
• Question: Do we always have to evaluate all children now?
• With scores, usually yes
• We can stop early in two scenarios

• We know the highest possible score,
and one child achieves it
(similar to boolean case)

• We have a bound, and only want to know
if we can reach at least that bound.
Can stop as soon as one child achieves bound

9

Examples - Stopping Early in MAX Nodes

• Scenario 1: maximum possible score is say 1000
• score(c1) = 527

• Keep searching...
• score(c2) = 1000

• Reached maximum
• No need to look at c3, c4...

• Scenario 2: we want to reach a bound, say at least 500
• score(c1) = 527

• First child is good enough, stop.
• No need to look at c2, c3...

• Question: What kind of boundedly rational decision-making
solution is this an example of?

10

Examples - Stopping Early in MAX Nodes

• Scenario 1: maximum possible score is say 1000
• score(c1) = 527

• Keep searching...
• score(c2) = 1000

• Reached maximum
• No need to look at c3, c4...

• Scenario 2: we want to reach a bound, say at least 500
• score(c1) = 527

• First child is good enough, stop.
• No need to look at c2, c3...
• Question: What kind of boundedly rational decision-making

solution is this an example of?

10

AND Node = MIN Node

• Opponent minimizes among all their moves
• AND node n, children c1, ..., ck :
• score(n) = min(score(c1), score(c2), ... score(ck))
• Compare win/loss case: n is win iff all children are wins

11

Boolean AND vs Computing Minimum

• Boolean AND is equivalent to taking MIN over { 0, 1 }
scores

• Booleans
• win(n) = win(c1) and win(c2) and ... and win(ck)
• win(n) if win(ci) = True for all i

• Numbers in the set { 0, 1 }
• score(n) = min(score(c1), score(c2), ... score(ck))
• score(n) = 1 if score(ci) = 1 for all i

12

Naive Minimax Search, General Case

• Similar to boolean case
• Compute max over all children in OR node
• Compute min over all children in AND node
• Two different functions MinimaxOR, MinimaxAND
• They call each other recursively
• Stop in terminal state, evaluate statically

13

Naive Minimax Search - OR node

Changes to boolean minimax in bold
int MinimaxOR(GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluate()

int best = -INFINITY
foreach legal move m from state

state.Execute(m)
int value = MinimaxAND(state)
if (value > best)

best = value
state.Undo()

return best

14

Naive Minimax Search - AND node

int MinimaxAND(GameState state)
if (state.IsTerminal())

return state.StaticallyEvaluate()
int best = +INFINITY
foreach legal move m from state

state.Execute(m)
int value = MinimaxOR(state)
if (value < best)

best = value
state.Undo()

return best

15

Negamax Search for Numbers

• Similar to boolean case
• Evaluation from current player’s point of view
• Single Negamax function, calls itself recursively
• Negate result of children to change to current player’s view

• Result of children always from other player’s view
• Compute the max of the negated results

16

Naive Negamax Search - No Pruning

int Negamax(GameState state)
if (state.IsTerminal())

return state.StaticallyEvaluateForToPlay()
int best = -INFINITY
foreach legal move m from state

state.Execute(m)
int value = -Negamax(state)
if (value > best)

best = value
state.Undo()

return best

17

Python Codes

• minimax_sample_tree.py,
minimax_sample_tree_data.py
artificial game tree to illustrate minimax and alphabeta

• naive_minimax.py, naive_negamax.py,
naive_minimax_negamax_test.py
Minimax and Negamax without any pruning, tests on
sample tree

18

Inefficiency of Plain Minimax/Negamax

• Inefficient. No pruning
• In (b,d) tree, searches all bd paths
• Compare to efficient pruning in boolean case

• What’s wrong? How can we prune moves?
• Revisit our two pruning scenarios above

• One idea will be of limited use in practice
• Other idea is very powerful, leads to alphabeta algorithm

19

Pruning Idea From Earlier Scenario 1

• If maximum possible value is reached:
• Return directly, prune remaining moves
• Easy to implement
• Powerful with only two values { 0, 1 }
• May not help much if we have many scores
• It is rare to win by the maximum score in real games

int Negamax(GameState state)
...

int value = -Negamax(state)
if (value > best)

best = value
if best == MAXVALUE:

return best
...

20

Pruning Idea From Earlier Scenario 2

• Idea was: prune when reaching “good enough” value
• Reduces search to the boolean case
• What does “good enough” mean?
• Answer: better than a bound

We look at two cases
• First: bound is already given to us
• Second: compute, update bounds during the search

• One bound for each player (alpha and beta)

21

Reduce Minimax Search to the Boolean Case

• Assume we already have a candidate minimax value m
• Question: Where might m come from?

• We can do two boolean searches
to verify if m is the minimax result

• Remember: each terminal state will be evaluated with its
score (a number)

• We replace those scores with a boolean win/loss result
• win: score above a threshold m
• loss: score below a threshold m
• What about score = m?

• It depends, see next slides

22

Reduce Minimax Search to the Boolean Case

• Assume we already have a candidate minimax value m
• Question: Where might m come from?

• We can do two boolean searches
to verify if m is the minimax result

• Remember: each terminal state will be evaluated with its
score (a number)

• We replace those scores with a boolean win/loss result
• win: score above a threshold m
• loss: score below a threshold m
• What about score = m?

• It depends, see next slides

22

Reduce Minimax Search
to Two Boolean Searches

Assume we already have a candidate minimax value m
• First search: Can we get at least m?

scores v ≥ m are wins,
scores v < m are losses

• Second search: Can we get more than m?
scores v > m are wins,
v ≤ m are losses

If:
• Search 1 returns a win
• Search 2 returns a loss

Then: m must be the minimax value

23

Understanding the Boolean Search Result(s)

• Given a candidate minimax value m
• Game can have three possible results:

greater than, smaller than, equal to m
• What if Search 1 returns a loss?

• Minimax value is smaller than m
• Stop, no need for Search 2

• What if Search 1 returns a win?
• Do Search 2
• What if Search 2 also returns a win?

• Minimax value is greater than m
• Search 1 returns win, Search 2 returns loss:

• Minimax value is equal to m

24

Boolean Searches and Proof Trees

• Scenario:
• Win with test (v ≥ m)
• Loss with test (v > m)

• Proof tree of the first search:
• Our winning strategy: achieve at least m

• Disproof tree of the second search:
• Opponent’s winning strategy:

prevent us from getting more than m
• Together, these two strategies prove that:

• No player can do better than m ...
• ... against a perfect opponent

25

Example - Solve TicTacToe

• Example: solve TicTacToe
• Set win-score = 1, draw-score = 0, loss-score = -1
• Set m = draw-score = 0
• First boolean search: test (v ≥ m), can X draw-or-win?

• Search result: yes
• Second boolean search: test (v > m), can X win?

• Search result: no
• Together, both searches prove:

• TicTacToe is a draw...
• See Python code
boolean_negamax_test_tictactoe.py

26

Discussion

• We learn something useful with both search outcomes
• Search with boolean test (v ≥ m) or (v > m)
• Result True: lower bound on true minimax value
• Result False: upper bound on true minimax value

• Important variants of alpha-beta search
are based on this idea

• SCOUT, NegaScout/PVS, MTD(f),...
• We will discuss the standard alpha-beta algorithm now
• Return to these ideas later

• How to use boolean searches to speed up alpha-beta

27

Alpha-beta Search

• Use if we have more than two outcomes,
e.g. numeric score

• Idea: keep lower and upper bounds (α, β)
on the true minimax value

• prune a position if its value v falls outside the (α, β)
window

• v < α we will avoid this position,
we already found a better alternative

• v > β opponent will avoid this position,
they already found a better alternative

• If v = β opponent can also ignore this position,
they already found an equally good alternative

28

Alpha-beta Search - Negamax Style

Changes from naive negamax in bold
int AlphaBeta(GameState state, int alpha, int beta)

if (state.IsTerminal())
return state.StaticallyEvaluateForToPlay()

foreach legal move m from state
state.Execute(m)
int value = -AlphaBeta(state, -beta, -alpha)
if (value > alpha) # alpha was ‘best‘ in negamax

alpha = value
state.Undo()
if (value >= beta)

return beta
return alpha

Initial call:
AlphaBeta(root, -INFINITY, +INFINITY)

29

Negamax Alphabeta Details

• Negamax - everything is from current player ’s point of view
• Avoids two separate cases for AND, OR nodes
• Negate scores when changing from player to opponent on

each level
• Example: score +5 for player becomes -5 for opponent
• Window (α, β) becomes (−β,−α) for opponent
• Example:

• window (+5, +10) for current player
• window (-10,-5) for opponent
• These are exactly the same window!
• Imagine mirroring the window along x = 0 axis

30

How does Alphabeta work? (1)

• Let v be value of node,
v1, v2, ..., vn values of children

• By definition:
in OR node, v = max(v1, v2, ..., vn)

• Fully evaluated child establishes lower bound on parent
• Example: if v1 = 5,

• v = max(5, v2, ..., vn) ≥ 5
• Other moves of value ≤ 5 do not help us

• They can be pruned
• In code:

• Set alpha to the best value so far
• From now on, ignore moves of lesser (or equal) value

31

How does Alphabeta work? (2)

• By definition: in AND node, v = min(v1, v2, ..., vn)

• Fully evaluated child establishes upper bound
• Example: if v1 = 2,

• v = min(2, v2, ..., vn) ≤ 2

32

How does Alphabeta work? (2)

Main idea of pruning in alphabeta: the beta cut
• if (value >= beta) return beta

• The move is too good for the current player - cut.
• How can a move be too good?
• beta corresponds to -alpha for opponent one level up
• value >= beta

is same as -value >= -alpha one level up for opponent
• That’s the same as value <= alpha for opponent
• The opponent can already get alpha elsewhere,

is not interested in achieving only value and will not play
to here

33

Python Codes for Alphabeta

• tic_tac_toe_integer_eval.py
Static evaluation win = +1, draw = 0, loss = -1 instead of
boolean evaluation at leaves

• alphabeta.py
Algorithm, negamax style

• alphabeta_test.py
Try on artificial game tree

34

From Exact Search to Heuristic Search

• All our algorithms so far search each move sequence until
the end of game

• This is needed for exact solver
• Heuristic play:

• Stop search earlier (e.g. at depth of d moves)
• Evaluate “leaf” node by a heuristic

• Depth-limited searches can be good for move ordering
• Idea (details later):

iterative deepening, increase depth 1, 2, 3,...
• Next slide: alphabeta with depth limit

35

Depth-limited Alpha-beta Search

int AlphaBeta(GameState state, int alpha, int beta, int depth)
if (state.IsTerminal() OR depth == 0)

return state.StaticallyEvaluateForToPlay()
foreach legal move m from state

state.Execute(m)
int value = -AlphaBeta(state, -beta, -alpha, depth - 1)
if (value > alpha)

alpha = value
state.Undo()
if (value >= beta)

return beta // or value - see failsoft
return alpha

Python code: alphabeta_depth_limited.py,
alphabeta_depth_limited_tictactoe_test.py

36

Summary

• From boolean case to numeric scores
• Naive Minimax and naive Negamax search
• Boolean searches to prove bounds on numeric scores
• Alphabeta search cuts off useless branches, much more

efficient
• Next time:

• Search improvements for boolean negamax and alphabeta
• Search on DAGs
• Reduce search depth in Go endgame solver

37

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Minimax and Alphabeta

