Computing Science (CMPUT) 455

Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta
james.wrightQualberta.ca

Fall 2021

james.wright@ualberta.ca

Today’s Topics

Today’s Topics:
e Minimax for win/draw/loss and numeric scores
¢ Alphabeta

Coursework

Work on Assignment 2
® Deadline extended to Monday Oct 18

Quiz 5: review minimax search parts 1 and 2.
Double-length quiz

® Deadline extended to Friday Oct 8
Read Schaeffer et al, Checkers is solved. Science, 2007
Activities 9

Midterm

e The midterm is Oct 12 (one week from today)

¢ Topics: All material up to and including lecture 10
(Thursday)

e Midterm study guide is available from main course page

e Exam on eclass, similar to quizzes
® 90-minute time limit (modulo user-specific accomodations)
® Opens 12:01am, closes 11:59pm Mountain time
® You must start before 10:29pm if you want the full
90 minutes

e No lecture on Tuesday

https://jrwright.info/cmput455/html/midterm-study-guide.html

Minimax and Alphabeta

Minimax Search: From Two to Many Different
Outcomes

¢ Last time: boolean negamax solver
for games with win-loss outcomes
What about win-loss-draw?
What about general numeric scores?
Similar principles

® A little bit more involved

® Remember our setting:

two player zero sum games, no chance element, perfect
information
Minimax search:
* We maximize score
® Opponent minimizes our score

Zero-sum: each point we win, the opponent loses

OR Node = MAX Node

Our turn, we maximize
Example, win-draw-loss game:

® Set win-score > draw-score > loss-score
® For example, can use
win = +1, draw = 0, loss = -1

OR node n, children ¢y, ..., ck
score(n) = max(score(cy), score(cs), ... score(ck))

Example: Boolean OR and Maximum of 0, 1

e Example shows equivalence between

® Logical OR

e Taking the maximum of numbers in the set {0, 1}
® Booleans

® True = we win

* False = we lose

® win(n) = win(cy) or win(cy) or ... or win(ck)
® win(n) if win(c;) = True for at least one i

e Numbers in the set {0, 1}

°* 1 =wewin

®* 0 =we lose

® score(n) = max(score(cy), score(cz), ... score(ck))
e score(n) = 1 if score(c;) = 1 for at least one i

MAX Node with Numeric Scores

Example: MAX node n

Five children with scores 2, 5, -3, 6, 10

score(n) = max(2, 5, -3, 6,10) = 10

Question: Do we always have to evaluate all children now?

MAX Node with Numeric Scores

Example: MAX node n

Five children with scores 2, 5, -3, 6, 10

score(n) = max(2, 5, -3, 6,10) = 10

Question: Do we always have to evaluate all children now?

With scores, usually yes
We can stop early in two scenarios
* We know the highest possible score,
and one child achieves it
(similar to boolean case)
* We have a bound, and only want to know
if we can reach at least that bound.
Can stop as soon as one child achieves bound

Examples - Stopping Early in MAX Nodes

Scenario 1: maximum possible score is say 1000
score(cy) = 527
® Keep searching...

score(c,) = 1000

® Reached maximum
* No need to look at ¢3, ¢4...

Scenario 2: we want to reach a bound, say at least 500
score(cq) = 527

® First child is good enough, stop.
® No need to look at ¢, cs...

Examples - Stopping Early in MAX Nodes

Scenario 1: maximum possible score is say 1000
score(cy) = 527
® Keep searching...

score(c,) = 1000

® Reached maximum
* No need to look at ¢3, ¢4...

Scenario 2: we want to reach a bound, say at least 500
score(cq) = 527
® First child is good enough, stop.
® No need to look at ¢, cs...
® Question: What kind of boundedly rational decision-making
solution is this an example of?

AND Node = MIN Node

e Opponent minimizes among all their moves

AND node n, children ¢y, ..., Ck:

score(n) = min(score(cy), score(cs), ... score(ck))
Compare win/loss case: nis win iff all children are wins

Boolean AND vs Computing Minimum

e Boolean AND is equivalent to taking MIN over { 0, 1}
scores
® Booleans
* win(n) = win(cy) and win(c;) and ... and win(cy)
® win(n) if win(c;) = True for all i
e Numbersinthe set{0, 1}

® score(n) = min(score(cy), score(c), ... score(ck))
® score(n) =1 if score(c;) = 1 for all /

Naive Minimax Search, General Case

Similar to boolean case

Compute max over all children in OR node
Compute min over all children in AND node

Two different functions MinimaxOR, MinimaxAND
They call each other recursively

e Stop in terminal state, evaluate statically

Naive Minimax Search - OR node

Changes to boolean minimax in bold

int MinimaxOR (GameState state)
if (state.IsTerminal())
return state.StaticallyEvaluate ()
int best = -INFINITY
foreach legal move m from state
state.Execute (m)
int value = MinimaxAND (state)
if (value > best)
best = wvalue
state.Undo ()
return best

Naive Minimax Search - AND node

int MinimaxAND (GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluate ()

int best = +INFINITY

foreach legal move m from state
state.Execute (m)
int value = MinimaxOR (state)
if (value < best)

best = wvalue

state.Undo ()

return best

Negamax Search for Numbers

Similar to boolean case

Evaluation from current player’s point of view

Single Negamax function, calls itself recursively
¢ Negate result of children to change to current player’s view
* Result of children always from other player’s view

Compute the max of the negated results

Naive Negamax Search - No Pruning

int Negamax (GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluateForToPlay ()

int best = -INFINITY

foreach legal move m from state
state.Execute (m)
int value = -Negamax(state)
if (value > best)

best = value

state.Undo ()

return best

Python Codes

® nminimax_sample_tree.py,
minimax_sample_tree_data.py
artificial game tree to illustrate minimax and alphabeta

® naive_minimax.py, naive_negamax.py,
naive_minimax_negamax_test.py
Minimax and Negamax without any pruning, tests on
sample tree

Inefficiency of Plain Minimax/Negamax

¢ |nefficient. No pruning

* In (b, d) tree, searches all b paths

® Compare to efficient pruning in boolean case
e What's wrong? How can we prune moves?
¢ Reuvisit our two pruning scenarios above

® One idea will be of limited use in practice
® Other idea is very powerful, leads to alphabeta algorithm

Pruning Idea From Earlier Scenario 1

¢ |f maximum possible value is reached:

Return directly, prune remaining moves

Easy to implement

Powerful with only two values { 0, 1 }

May not help much if we have many scores

e |t is rare to win by the maximum score in real games

int Negamax (GameState state)

int value = -Negamax (state)
if (value > best)

best = wvalue

if best == MAXVALUE:

return best

20

Pruning Idea From Earlier Scenario 2

ldea was: prune when reaching “good enough” value
Reduces search to the boolean case

What does “good enough” mean?

® Answer: better than a bound

We look at two cases

e First: bound is already given to us
e Second: compute, update bounds during the search
® One bound for each player (alpha and beta)

21

Reduce Minimax Search to the Boolean Case

e Assume we already have a candidate minimax value m
® Question: Where might m come from?

22

Reduce Minimax Search to the Boolean Case

e Assume we already have a candidate minimax value m
® Question: Where might m come from?

We can do two boolean searches
to verify if mis the minimax result

Remember: each terminal state will be evaluated with its
score (a number)
We replace those scores with a boolean win/loss result

® win: score above a threshold m
® |oss: score below a threshold m
* What about score = m?

® |t depends, see next slides

22

Reduce Minimax Search
to Two Boolean Searches

Assume we already have a candidate minimax value m

e First search: Can we get at least m?
scores v > m are wins,
scores v < m are losses

¢ Second search: Can we get more than m?
scores v > m are wins,
v < m are losses

e Search 1 returns a win

e Search 2 returns a loss
Then: m must be the minimax value

23

Understanding the Boolean Search Result(s)

e Given a candidate minimax value m

e Game can have three possible results:
greater than, smaller than, equal to m
e What if Search 1 returns a loss?
® Minimax value is smaller than m
® Stop, no need for Search 2
e What if Search 1 returns a win?

® Do Search 2
e What if Search 2 also returns a win?

® Minimax value is greater than m
e Search 1 returns win, Search 2 returns loss:
® Minimax value is equal to m

24

Boolean Searches and Proof Trees

Scenario:

* Win with test (v > m)

® Loss with test (v > m)
Proof tree of the first search:

® Qur winning strategy: achieve at least m
Disproof tree of the second search:

® Opponent’s winning strategy:

prevent us from getting more than m

Together, these two strategies prove that:

® No player can do better than m ...
e ... against a perfect opponent

25

Example - Solve TicTacToe

e Example: solve TicTacToe

e Set win-score = 1, draw-score = 0, loss-score = -1

e Set m = draw-score =0

¢ First boolean search: test (v > m), can X draw-or-win?
e Search result: yes

¢ Second boolean search: test (v > m), can X win?
® Search result: no

® Together, both searches prove:
e TicTacToe is a draw...

e See Python code
boolean_negamax_test_tictactoe.py

26

Discussion

We learn something useful with both search outcomes

e Search with boolean test (v > m) or (v > m)
® Result True: lower bound on true minimax value
® Result False: upper bound on true minimax value

¢ Important variants of alpha-beta search
are based on this idea
e SCOUT, NegaScout/PVS, MTD(f),...
We will discuss the standard alpha-beta algorithm now

Return to these ideas later
* How to use boolean searches to speed up alpha-beta

27

Alpha-beta Search

e Use if we have more than two outcomes,
e.g. numeric score

¢ |dea: keep lower and upper bounds («,)
on the true minimax value

¢ prune a position if its value v falls outside the («, /)
window

* v < a we will avoid this position,
we already found a better alternative

* v > 3 opponent will avoid this position,
they already found a better alternative

® If v = 3 opponent can also ignore this position,
they already found an equally good alternative

28

Alpha-beta Search - Negamax Style

Changes from naive negamax in bold

int AlphaBeta (GameState state, int alpha, int beta)
if (state.IsTerminal())
return state.StaticallyEvaluateForToPlay ()
foreach legal move m from state
state.Execute (m)
int value = -AlphaBeta(state, -beta, -alpha)
if (value > alpha) # alpha was ‘best' in negamax
alpha = value
state.Undo ()
if (value >= beta)
return beta
return alpha

Initial call:
AlphaBeta (root, —-INFINITY, +INFINITY)

29

Negamax Alphabeta Details

e Negamax - everything is from current player’s point of view
Avoids two separate cases for AND, OR nodes

Negate scores when changing from player to opponent on
each level

Example: score +5 for player becomes -5 for opponent
Window («, 3) becomes (—/3, —«) for opponent

Example:

e window (+5, +10) for current player

¢ window (-10,-5) for opponent

® These are exactly the same window!

® Imagine mirroring the window along x = 0 axis

30

How does Alphabeta work? (1)

Let v be value of node,
Vi, Vo, ..., Vo values of children
By definition:
in OR node, v = max(vy, v, ..., Vp)
Fully evaluated child establishes lower bound on parent
Example: if vi =5,
® v=max(5,Vva,...,Vp) =5
Other moves of value < 5 do not help us
® They can be pruned
In code:

® Set alpha to the best value so far
® From now on, ignore moves of lesser (or equal) value

31

How does Alphabeta work? (2)

¢ By definition: in AND node, v = min(vy, Vo, ..., Vp)
¢ Fully evaluated child establishes upper bound
e Example: if vi =2,

® v=min(2,vs,..,Vp) <2

32

How does Alphabeta work? (2)

Main idea of pruning in alphabeta: the beta cut

if (value >= beta) return beta

The move is too good for the current player - cut.
How can a move be too good?

beta corresponds to -alpha for opponent one level up

value >= beta

is same as —value >= -—alpha one level up for opponent
That’s the same as value <= alpha for opponent

The opponent can already get alpha elsewhere,

is not interested in achieving only value and will not play
to here

33

Python Codes for Alphabeta

® tic_tac_toe_integer_eval.py
Static evaluation win = +1, draw = 0, loss = -1 instead of
boolean evaluation at leaves

® alphabeta.py
Algorithm, negamax style

® 3lphabeta_test.py
Try on artificial game tree

34

From Exact Search to Heuristic Search

e All our algorithms so far search each move sequence until
the end of game

® This is needed for exact solver
e Heuristic play:

® Stop search earlier (e.g. at depth of d moves)
* Evaluate “leaf” node by a heuristic

e Depth-limited searches can be good for move ordering

e |dea (details later):
iterative deepening, increase depth 1, 2, 3,...

¢ Next slide: alphabeta with depth limit

35

Depth-limited Alpha-beta Search

int AlphaBeta (GameState state, int alpha, int beta, int depth)
if (state.IsTerminal () OR depth == 0)
return state.StaticallyEvaluateForToPlay ()
foreach legal move m from state
state.Execute (m)
int value = -AlphaBeta(state, -beta, -alpha, depth - 1)
if (value > alpha)
alpha = value
state.Undo ()
if (value >= beta)
return beta // or value - see failsoft
return alpha

Python code: alphabeta_depth_limited.py,
alphabeta_depth_limited_tictactoe_test.py

36

Summary

From boolean case to numeric scores

Naive Minimax and naive Negamax search

Boolean searches to prove bounds on numeric scores
Alphabeta search cuts off useless branches, much more
efficient

e Next time:

® Search improvements for boolean negamax and alphabeta
® Search on DAGs
® Reduce search depth in Go endgame solver

37

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Minimax and Alphabeta

