Computing Science (CMPUT) 455 Search, Knowledge, and Simulations

James Wright

Department of Computing Science University of Alberta james.wright@ualberta.ca

Fall 2021

1

Today's Topics:

- Minimax for win/draw/loss and numeric scores
- Alphabeta

- Work on Assignment 2
 - Deadline extended to Monday Oct 18
- Quiz 5: review minimax search parts 1 and 2. Double-length quiz
 - Deadline extended to Friday Oct 8
- Read Schaeffer et al, Checkers is solved. Science, 2007
- Activities 9

- The midterm is Oct 12 (one week from today)
- Topics: All material up to and including lecture 10 (Thursday)
- Midterm study guide is available from main course page
- Exam on eclass, similar to quizzes
 - 90-minute time limit (modulo user-specific accomodations)
 - Opens 12:01am, closes 11:59pm Mountain time
 - You must start before 10:29pm if you want the full 90 minutes
- No lecture on Tuesday

Minimax and Alphabeta

Minimax Search: From Two to Many Different Outcomes

- Last time: boolean negamax solver for games with win-loss outcomes
- What about win-loss-draw?
- What about general numeric scores?
- Similar principles
 - A little bit more involved
 - Remember our setting: two player zero sum games, no chance element, perfect information
- Minimax search:
 - We maximize score
 - Opponent minimizes our score
- Zero-sum: each point we win, the opponent loses

- Our turn, we maximize
- Example, win-draw-loss game:
 - Set win-score > draw-score > loss-score
 - For example, can use win = +1, draw = 0, loss = -1
- OR node *n*, children *c*₁, ..., *c*_{*k*}
- score(n) = max(score(c₁), score(c₂), ... score(c_k))

Example: Boolean OR and Maximum of 0, 1

- Example shows equivalence between
 - Logical OR
 - Taking the maximum of numbers in the set { 0, 1 }
- Booleans
 - True = we win
 - False = we lose
 - win(n) = win(c_1) or win(c_2) or ... or win(c_k)
 - win(n) if win(c_i) = True for at least one i
- Numbers in the set { 0, 1 }
 - 1 = we win
 - 0 = we lose
 - $\operatorname{score}(n) = \max(\operatorname{score}(c_1), \operatorname{score}(c_2), \dots \operatorname{score}(c_k))$
 - score(n) = 1 if score(c_i) = 1 for at least one i

MAX Node with Numeric Scores

- Example: MAX node n
- Five children with scores 2, 5, -3, 6, 10
- score(*n*) = max(2, 5, -3, 6, **10**) = 10
- Question: Do we always have to evaluate all children now?

MAX Node with Numeric Scores

- Example: MAX node n
- Five children with scores 2, 5, -3, 6, 10
- score(*n*) = max(2, 5, -3, 6, **10**) = 10
- Question: Do we always have to evaluate all children now?
- With scores, usually yes
- We can stop early in two scenarios
 - We know the highest possible score, and one child achieves it (similar to boolean case)
 - We have a *bound*, and only want to know if we can reach at least that bound. Can stop as soon as one child achieves bound

Examples - Stopping Early in MAX Nodes

- Scenario 1: maximum possible score is say 1000
- $score(c_1) = 527$
 - Keep searching...
- $score(c_2) = 1000$
 - Reached maximum
 - No need to look at c₃, c₄...
- Scenario 2: we want to reach a bound, say at least 500
- $score(c_1) = 527$
 - First child is good enough, stop.
 - No need to look at c₂, c₃...

Examples - Stopping Early in MAX Nodes

- Scenario 1: maximum possible score is say 1000
- $score(c_1) = 527$
 - Keep searching...
- $score(c_2) = 1000$
 - Reached maximum
 - No need to look at c₃, c₄...
- Scenario 2: we want to reach a bound, say at least 500
- $score(c_1) = 527$
 - First child is good enough, stop.
 - No need to look at c_2 , c_3 ...
 - Question: What kind of boundedly rational decision-making solution is this an example of?

- · Opponent minimizes among all their moves
- AND node *n*, children *c*₁,..., *c*_k:
- $\operatorname{score}(n) = \min(\operatorname{score}(c_1), \operatorname{score}(c_2), \dots \operatorname{score}(c_k))$
- Compare win/loss case: *n* is win iff all children are wins

- Boolean AND is equivalent to taking MIN over { 0, 1 } scores
- Booleans
 - win(n) = win(c_1) and win(c_2) and ... and win(c_k)
 - win(n) if win(c_i) = True for all i
- Numbers in the set { 0, 1 }
 - score(n) = min(score(c₁), score(c₂), ... score(c_k))
 - score(n) = 1 if score(c_i) = 1 for all i

Naive Minimax Search, General Case

- Similar to boolean case
- Compute max over all children in OR node
- Compute min over all children in AND node
- Two different functions MinimaxOR, MinimaxAND
- They call each other recursively
- Stop in terminal state, evaluate statically

Naive Minimax Search - OR node

Changes to boolean minimax in **bold**

```
int MinimaxOR(GameState state)
    if (state.IsTerminal())
        return state.StaticallyEvaluate()
    int best = -INFINITY
    foreach legal move m from state
        state.Execute(m)
        int value = MinimaxAND(state)
        if (value > best)
            best = value
        state.Undo()
    return best
```

Naive Minimax Search - AND node

int **MinimaxAND** (GameState state) if (state.IsTerminal()) return state.StaticallyEvaluate() int best = +INFINITY foreach legal move m from state state.Execute(m) int value = **MinimaxOR**(state) if (value < best) best = valuestate.Undo() return best

- Similar to boolean case
- Evaluation from current player's point of view
- Single Negamax function, calls itself recursively
- Negate result of children to change to current player's view
 - Result of children always from other player's view
- · Compute the max of the negated results

```
int Negamax(GameState state)
    if (state.IsTerminal())
        return state.StaticallyEvaluateForToPlay()
    int best = -INFINITY
    foreach legal move m from state
        state.Execute(m)
        int value = -Negamax(state)
        if (value > best)
            best = value
        state.Undo()
    return best
```

- minimax_sample_tree.py, minimax_sample_tree_data.py artificial game tree to illustrate minimax and alphabeta
- naive_minimax.py, naive_negamax.py, naive_minimax_negamax_test.py
 Minimax and Negamax without any pruning, tests on sample tree

Inefficiency of Plain Minimax/Negamax

- Inefficient. No pruning
 - In (b, d) tree, searches all b^d paths
 - Compare to efficient pruning in boolean case
- What's wrong? How can we prune moves?
- Revisit our two pruning scenarios above
 - One idea will be of limited use in practice
 - Other idea is very powerful, leads to alphabeta algorithm

Pruning Idea From Earlier Scenario 1

- If maximum possible value is reached:
- Return directly, prune remaining moves
- Easy to implement
- Powerful with only two values { 0, 1 }
- May not help much if we have many scores
- It is rare to win by the maximum score in real games

```
int Negamax(GameState state)
...
int value = -Negamax(state)
if (value > best)
    best = value
    if best == MAXVALUE:
        return best
```

Pruning Idea From Earlier Scenario 2

- Idea was: prune when reaching "good enough" value
- Reduces search to the boolean case
- What does "good enough" mean?
- Answer: better than a bound

We look at two cases

- First: bound is already given to us
- Second: compute, update bounds during the search
 - One bound for each player (alpha and beta)

Reduce Minimax Search to the Boolean Case

- Assume we already have a candidate minimax value m
 - Question: Where might m come from?

Reduce Minimax Search to the Boolean Case

- Assume we already have a candidate minimax value *m*
 - Question: Where might *m* come from?
- We can do **two** boolean searches to verify if *m* is the minimax result
- Remember: each terminal state will be evaluated with its score (a number)
- We replace those scores with a boolean win/loss result
 - win: score above a threshold *m*
 - loss: score below a threshold *m*
 - What about score = m?
 - It depends, see next slides

Reduce Minimax Search to Two Boolean Searches

Assume we already have a candidate minimax value m

- First search: Can we get at least m? scores v ≥ m are wins, scores v < m are losses
- Second search: Can we get more than m? scores v > m are wins,

 $v \leq m$ are losses

lf:

- Search 1 returns a win
- Search 2 returns a loss

Then: *m* must be the minimax value

Understanding the Boolean Search Result(s)

- Given a candidate minimax value m
- Game can have three possible results: greater than, smaller than, equal to *m*
- What if Search 1 returns a loss?
 - Minimax value is smaller than m
 - Stop, no need for Search 2
- What if Search 1 returns a win?
 - Do Search 2
 - What if Search 2 also returns a win?
 - Minimax value is greater than m
 - Search 1 returns win, Search 2 returns loss:
 - Minimax value is equal to m

Boolean Searches and Proof Trees

- Scenario:
 - Win with test $(v \ge m)$
 - Loss with test (v > m)
- Proof tree of the first search:
 - Our winning strategy: achieve at least m
- Disproof tree of the second search:
 - Opponent's winning strategy: prevent us from getting more than *m*
- Together, these two strategies prove that:
 - No player can do better than m ...
 - ... against a perfect opponent

Example - Solve TicTacToe

- Example: solve TicTacToe
- Set win-score = 1, draw-score = 0, loss-score = -1
- Set *m* = draw-score = 0
- First boolean search: test (v ≥ m), can X draw-or-win?
 - Search result: yes
- Second boolean search: test (v > m), can X win?
 - Search result: no
- Together, both searches prove:
 - TicTacToe is a draw...
- See Python code

boolean_negamax_test_tictactoe.py

- We learn something useful with both search outcomes
 - Search with boolean test $(v \ge m)$ or (v > m)
 - Result True: lower bound on true minimax value
 - Result False: upper bound on true minimax value
- Important variants of alpha-beta search are based on this idea
 - SCOUT, NegaScout/PVS, MTD(f),...
- We will discuss the standard alpha-beta algorithm now
- Return to these ideas later
 - How to use boolean searches to speed up alpha-beta

- Use if we have more than two outcomes, e.g. numeric score
- Idea: keep lower and upper bounds (α, β) on the true minimax value
- prune a position if its value v falls outside the (α, β) window
 - ν < α we will avoid this position, we already found a better alternative
 - *ν* > β opponent will avoid this position, they already found a better alternative
 - If *v* = β opponent can also ignore this position, they already found an equally good alternative

Alpha-beta Search - Negamax Style

Changes from naive negamax in bold

```
int AlphaBeta (GameState state, int alpha, int beta)
    if (state.IsTerminal())
        return state.StaticallyEvaluateForToPlay()
    foreach legal move m from state
        state.Execute(m)
        int value = -AlphaBeta(state, -beta, -alpha)
        if (value > alpha) # alpha was 'best' in negamax
            alpha = value
        state.Undo()
        if (value >= beta)
            return beta
    return alpha
Initial call:
AlphaBeta(root, -INFINITY, +INFINITY)
```

Negamax Alphabeta Details

- Negamax everything is from current player's point of view
- Avoids two separate cases for AND, OR nodes
- Negate scores when changing from player to opponent on each level
- Example: score +5 for player becomes -5 for opponent
- Window (α, β) becomes $(-\beta, -\alpha)$ for opponent
- Example:
 - window (+5, +10) for current player
 - window (-10,-5) for opponent
 - These are exactly the same window!
 - Imagine mirroring the window along x = 0 axis

How does Alphabeta work? (1)

- Let v be value of node,
 - $v_1, v_2, ..., v_n$ values of children
- By definition: in OR node, v = max(v₁, v₂, ..., v_n)
- · Fully evaluated child establishes lower bound on parent
- Example: if $v_1 = 5$,
 - $v = \max(5, v_2, ..., v_n) \ge 5$
- Other moves of value \leq 5 do not help us
 - They can be pruned
- In code:
 - Set alpha to the best value so far
 - From now on, ignore moves of lesser (or equal) value

- By definition: in AND node, $v = \min(v_1, v_2, ..., v_n)$
- · Fully evaluated child establishes upper bound
- Example: if $v_1 = 2$,

•
$$v = \min(2, v_2, ..., v_n) \le 2$$

Main idea of pruning in alphabeta: the beta cut

- if (value >= beta) return beta
- The move is too good for the current player cut.
- How can a move be too good?
- beta corresponds to -alpha for opponent one level up
- value >= beta
 is same as -value >= -alpha one level up for opponent
- That's the same as value <= alpha for opponent
- The opponent can already get alpha elsewhere, is not interested in achieving only value and will not play to here

- tic_tac_toe_integer_eval.py
 Static evaluation win = +1, draw = 0, loss = -1 instead of boolean evaluation at leaves
- alphabeta.py Algorithm, negamax style
- alphabeta_test.py Try on artificial game tree

From Exact Search to Heuristic Search

- All our algorithms so far search each move sequence until the end of game
- This is needed for exact solver
- Heuristic play:
 - Stop search earlier (e.g. at depth of *d* moves)
 - Evaluate "leaf" node by a heuristic
- Depth-limited searches can be good for move ordering
- Idea (details later): iterative deepening, increase depth 1, 2, 3,...
- Next slide: alphabeta with depth limit

Depth-limited Alpha-beta Search

```
int AlphaBeta(GameState state, int alpha, int beta, int depth)
if (state.IsTerminal() OR depth == 0)
return state.StaticallyEvaluateForToPlay()
foreach legal move m from state
state.Execute(m)
int value = -AlphaBeta(state, -beta, -alpha, depth - 1)
if (value > alpha)
alpha = value
state.Undo()
if (value >= beta)
return beta // or value - see failsoft
return alpha
```

Python code: alphabeta_depth_limited.py, alphabeta_depth_limited_tictactoe_test.py

- From boolean case to numeric scores
- Naive Minimax and naive Negamax search
- Boolean searches to prove bounds on numeric scores
- Alphabeta search cuts off useless branches, much more efficient
- Next time:
 - · Search improvements for boolean negamax and alphabeta
 - Search on DAGs
 - Reduce search depth in Go endgame solver