
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca

Today’s Topics

Today’s Topics:
• Assignment 2 preview
• Solving two-player games, TicTacToe example
• Winning strategy
• Concepts for game trees: OR nodes, AND nodes
• Minimax algorithm for the boolean (win/loss) case
• Quiz 4 review

2

Coursework

• Read Schaeffer et al, Checkers is solved.
• Activities 8
• Start Assignment 2 - Gomoku endgame solver

• Due: Oct 11, 2021 11:55pm Mountain time
• Late submission: Oct 13, 2021 11:55pm Mountain time
• You may change teams, but if so you must email the TAs
• Deadlines are firm.

• NO CLASS ON THURSDAY SEP 30

3

Assignment 2 - Gomoku Endgame Solver

• Assignment 2
• Specification published now
• Preview in class today
• Starter code = a sample solution to Assignment 1, legal

random Gomoku player

4

Python Sample Codes

• Study TicTacToe solver now to prep for assignment 2
• See python code page

5

Assignment 2 Preview

• Goal: write a perfect solver for GoMoku endgames
• Assignment description:
https://jrwright.info/cmput455/assignments/
a2.html

• We will start talking about the concepts and algorithms in
class today

6

https://jrwright.info/cmput455/assignments/a2.html
https://jrwright.info/cmput455/assignments/a2.html

Assignment 2 Preview

• You are given a “clean” GoMoku random player
• You will also be given some sample code for solving

TicTacToe
See python sample code on
https://jrwright.info/cmput455/python/
index.html#L8

• Relevant code will be from lectures 8 (now), 9 and 10 (next
week)

7

https://jrwright.info/cmput455/python/index.html#L8
https://jrwright.info/cmput455/python/index.html#L8

Assignment 2 Preview

• As before, we will have both public and private test cases
• There will be bonus marks for solvers that are significantly

faster than ours
• Same presubmission and early feedback procedure as in

assignment 1
• By default: same teams. Let TAs know of any changes to

teams

8

Solving Games with Minimax Search

9

Solving Games

• What does solving a game mean?
• Find the correct outcome of the game

• With best play...
• ...by both players.

• Different kinds of solving
• Ultra-weakly solved: know the outcome, but have no

concrete strategies
• Weakly solved: contains a winning strategy starting from

the initial state
• Strongly solved: provide an algorithm that can win from any

position of the game

• Question: Why would we want an algorithm for starting
from any position?

10

Solving Games

• What does solving a game mean?
• Find the correct outcome of the game

• With best play...
• ...by both players.

• Different kinds of solving
• Ultra-weakly solved: know the outcome, but have no

concrete strategies
• Weakly solved: contains a winning strategy starting from

the initial state
• Strongly solved: provide an algorithm that can win from any

position of the game
• Question: Why would we want an algorithm for starting

from any position?

10

Solving Games

• How to play if we have a win?
• Need a winning strategy
• Start with TicTacToe example

11

Wins, Losses and Draws

12

Winning Strategy - Depth 1

• X can win in one move
• Winning strategy just contains that move

13

Winning Strategy - Depth 2

• Winning strategy:
d=1: include all opponent moves
d=2: one winning move for us in each branch→ we win

14

Winning Strategy - Depth 3

• d=1: One move for us
d=2: one branch for each possible opponent reply
d=3: one winning move in each branch→ we win

15

Winning Strategy - Depth 4

• d=1: all six opponent moves
d=2: one move for us,
leads to a known winning position

16

Winning Strategies - Depth 5 Examples

• Two examples
• d=1: One move in each example,

both lead to the same winning position (from previous
slide)

17

What a Winning Strategy Looks Like

• In a game, if it is our turn, we have a choice
• Play move1 or move2 or...

• It is enough to know one winning move
• If it is the opponent’s move,

we need to win against all their moves
• Win against move1 and move2 and ...

• We need to include all their moves in our strategy

18

Winning Strategy as a Tree (or DAG)

• Consequence: the winning strategy is a tree (or DAG)
• The winning strategy includes:
• One move when it’s our turn
• All moves when it’s the opponent’s turn
• The tree (or DAG) of a winning strategy is much smaller

than the whole state space (Why?)

• It can still be very large
• It branches at every second level

• Branch only when it’s the loser’s turn

19

Winning Strategy as a Tree (or DAG)

• Consequence: the winning strategy is a tree (or DAG)
• The winning strategy includes:
• One move when it’s our turn
• All moves when it’s the opponent’s turn
• The tree (or DAG) of a winning strategy is much smaller

than the whole state space (Why?)
• It can still be very large
• It branches at every second level

• Branch only when it’s the loser’s turn

19

Proving a Win

• To prove a win we need to find a winning strategy
• Usually, we do not store it

• We just use search to prove a win (see later)
• Usually, we build a strategy top-down from the root
• Conceptually, we can also build a strategy bottom-up from

the end
• First question:

• What are winning terminal positions?
• The rules of the game give the answer

20

Evaluation of Terminal Positions

Game over, what’s the result?
Different Types of evaluation:
• Simplest case: binary (or boolean) evaluation, win-loss

• Examples: Coin toss, Go with non-integer komi
• Popular case: win-draw-loss

• Examples: TicTacToe, chess, checkers
• Go with integer komi

• More general case: games with score
• Examples: win by 5 points
• Win $10,000,000

21

Tic Tac Toe Sample Code

• tic_tac_toe.py has board representation, rules
• Similar to Go1, board stored in 1-d array of size 9
• Status codes
EMPTY = 0, BLACK = 1 for ’X’, WHITE = 2 for ’O’
• Useful functions legalMoves, endOfGame, play,
undoMove,...

Board indexing:

0 1 2
3 4 5
6 7 8

22

AND/OR Tree

In a game tree:
• Position where it is our turn:

OR node
• Position where it is the opponent’s turn:

AND node
• Alternating play

• Each move from an OR node
leads to an AND node

• Each move from an AND node
leads to an OR node

23

Leaf Nodes

• Leaf nodes are terminal states of the game
• Game is over
• Can determine the result from the rules
• Examples:

• Count the score in Go→ winner
• TicTacToe 3-in-a-row→ win
• TicTacToe board full, no 3-in-a-row→ draw

24

Winning in an OR Node

• Our turn
• Finding one winning move is enough
• OR node n
• Children c1, ..., ck

• win(n) = win(c1) or win(c2) or ... or win(ck)
• Shortcut evaluation:

can stop at the first child that is a win
• We can play that move to win from n
• Best case for search: the first child c1 is a win

25

Winning in an AND Node

• Opponent’s turn
• We win only if we win after all opponent moves
• AND node n
• Children c1, ..., ck

• win(n) = win(c1) and win(c2) and ... and win(ck)
• Shortcut evaluation:

can stop at the first child that is a loss
• The opponent can play that move to make us lose from n
• Best case for search: the first child c1 is a loss

• Question: Why is a loss the best case?

26

What if the State Space is a DAG?

• Exactly the same concepts work in DAG
• Difference in practice:
• We can store and share wins and losses computed earlier
• Different paths to reach the same node
• Only prove a win (or loss) for a node once,

then remember
• Example earlier: two depth five wins by moving to the

same win-in-4 position
• Prove once, use for two different lines

27

Re-using proofs in a DAG

• Main technique to store states and results:
• Hash table
• Also called transposition table
• How to use in search: details later

• Question: Why not just add a flag to the state?

28

Re-using proofs in a DAG

• Main technique to store states and results:
• Hash table
• Also called transposition table
• How to use in search: details later
• Question: Why not just add a flag to the state?

28

Boolean Minimax Algorithm

29

Minimax Algorithm - Boolean Version -
OR Node

• Each player tries to win.
Zero-sum - opponent’s win is my loss
• OR node: If I have at least one winning move,

I can win (by playing that move)
• If all my moves lose, I lose.

// Basic Minimax with boolean outcomes
bool MinimaxBooleanOR(GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluate()

foreach successor s of state
if (MinimaxBooleanAND(s))

return true
return false

30

Minimax Algorithm - Boolean Version -
AND Node

• AND node: All opponent moves need to win for me
• If any of their moves lose me the game, I lose.

// Basic Minimax with boolean outcomes
bool MinimaxBooleanAND(GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluate()

foreach successor s of state
if (NOT MinimaxBooleanOR(s))

return false
return true

31

Minimax Algorithm - Boolean Version (2)

• Less abstract pseudocode showing execute, undo move
• Python3 code boolean_minimax.py

// Minimax, boolean outcomes, execute/undo
bool MinimaxBooleanOR(GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluate()

foreach legal move m from state
state.Execute(m)
bool isWin = MinimaxBooleanAND(state)
state.Undo()
if (isWin)

return true
return false

32

Boolean Minimax Algorithm - AND Node

• Less abstract version showing execute, undo move

// Minimax, boolean outcomes, execute/undo
bool MinimaxBooleanAND(GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluate()

foreach legal move m from state
state.Execute(m)
bool isWin = MinimaxBooleanOR(state)
state.Undo()
if (NOT isWin)

return false
return true

33

Negamax Algorithm - Main Idea

• All evaluation in StaticallyEvaluate(),
MinimaxBooleanOR(s) and MinimaxBooleanAND(s)
is from a fixed player’s point of view
• We can also evaluate from the point of view of the

current player
• ⇒ Negamax formulation of minimax search
• Current player changes with each move -

negate result of recursive call
• My win is your loss, my loss is your win

34

Negamax Algorithm - Boolean Version

// Negamax, boolean outcomes
bool NegamaxBoolean(GameState state)

if (state.IsTerminal())
return state.StaticallyEvaluateForToPlay()

foreach legal move m from state
state.Execute(m)
bool isWin = NOT NegamaxBoolean(state)
state.Undo()
if (isWin)

return true
return false

35

Python Implementation and Solve TicTacToe

• Boolean negamax solver boolean_negamax.py
• Use to solve TicTacToe:
boolean_negamax_test_tictactoe.py

• Main question: how to handle draws?
• Boolean solver only deals with two outcomes
• We can choose whether draws should count for Black or

White
• In TicTacToe code: function setDrawWinner

• More on this topic next class

36

Boolean Minimax - Discussion

• Basic recursive algorithm
• Runtime depends on:

• depth of search
• width (branching factor)
• move ordering - stops when first winning move found

• Easy modification to compute all winning moves
• Add a top-level loop which does not stop at the first win

• Questions: best-case, worst-case performance?

37

Boolean Minimax - Discussion (2)

• Boolean case is simpler special case of minimax search
• Efficient pruning - stops as soon as win is found
• Important tool used in more advanced algorithms later
• What is the runtime? Depends on move ordering
• Simple model: uniform tree, depth d , branching factor b
• What is best case, worst case?

38

Boolean Minimax - Efficiency

• Best case: about bd/2, first move causes cutoff at each
level
• Cutoff = early return from function because we found a

move that works
• Exact calculation for best case - a little later

• Worst case: about bd , no move causes cutoff
• Exact number: Visits all nodes in the tree, count as before:

1 + b + b2 + ...+ bd = (bd+1 − 1)/(b − 1)

39

Proof Tree

• A winning strategy for a player
• Dual concept: disproof tree - proves that we lose, cannot

win
• A subset of a game tree
• Gives us a winning move in each position we may

encounter (as long as we follow the strategy...)
• Covers all possible opponent replies at each point when it’s

their turn

40

Definition of Proof Tree

Definition (Proof tree)
A subtree P of game tree G is a proof tree iff all of the following
are true:
• P contains the root of G
• All leaf nodes of P are wins
• If interior AND node is in P, then:

all its children are in P
• If interior OR node is on P, then:

at least one child is in P

41

Comments on Proof Tree

• Exactly the same definitions work on DAG, even on
arbitrary graph
• Another name for proof tree: solution tree
• Efficiency: want to find a minimal or at least a small proof

tree

42

Size of Proof Tree

• Scenario: uniform (b,d) tree, OR node at root, we win
• How many nodes at each level?
• Level 0: 1 node (root)
• Level 1: ≥ 1 nodes (at least one child...), best case 1
• Level 2: ≥ b nodes (all children of level 1 nodes), best

case b
• General pattern for best case: 1,1,b,b,b2,b2,b3,b3, ...

• Activities: Find formulas for size of proof trees in the best
case

43

Best Case For Boolean Minimax Search

• Search is most efficient if it looks only at the proof tree
• This means, at OR nodes we only look at a winning move

• We never look at a non-winning move first
• In practice, that’s usually impossible - too hard.
• Good move ordering is crucial for efficient search

• Compare with heuristic in treasure hunt example, Lecture 7
• We can use good move ordering heuristics, or techniques

based on successively deeper searches
• More later

44

Summary of Solving Games

• Concepts: winning strategy, AND/OR trees
• Solving OR nodes, AND nodes
• Boolean Minimax and Negamax
• Efficient pruning of tree - stop at first winning move
• Good move ordering finds that first move faster

45

Quiz 4 Review

• Quiz 4: State space size, sequential decision making,
optimization
• 78 attempts. Average grade: 85.7%
• Lowest scores: Q4: 73%, Q5: 70%, Q6: 73%

46

Quiz 4 Review: Q4 and Q5

Given a DAG with d = 3. Each node
except the leaves has 10 children, and
each node except the root and its
children has 10 incoming edges. The
children of the root have only one
incoming edge.

d=0

d=1

d=2

d=3

Q4 How many leaves does this DAG have?
• 10: If every node at d ≥ 1 has k outgoing edges, and

every node at d > 1 has k incoming edges, then the
number of nodes at each level doesn’t grow.

Q5 How many nodes in total does it have?

(1 root) + (k nodes/level)× (d levels) = 31

47

Quiz 4 Review: Q4 and Q5

Given a DAG with d = 3. Each node
except the leaves has 10 children, and
each node except the root and its
children has 10 incoming edges. The
children of the root have only one
incoming edge.

d=0

d=1

d=2

d=3

Q4 How many leaves does this DAG have?
• 10: If every node at d ≥ 1 has k outgoing edges, and

every node at d > 1 has k incoming edges, then the
number of nodes at each level doesn’t grow.

Q5 How many nodes in total does it have?

(1 root) + (k nodes/level)× (d levels) = 31

47

Quiz 4 Review: Q6

Q6 Consider the different possible sequences of states and
actions starting from the same start state.
Claim: When we organize these sequences into a tree,
some sequences might not share any nodes.

• False: At the very least, every sequence shares the start
node.

...

...

48

Quiz 4 Review: Q6

Q6 Consider the different possible sequences of states and
actions starting from the same start state.
Claim: When we organize these sequences into a tree,
some sequences might not share any nodes.
• False: At the very least, every sequence shares the start

node.

...

...

48

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Solving Games with Minimax Search
	Boolean Minimax Algorithm

