Computing Science (CMPUT) 455

Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta
james.wrightQualberta.ca

Fall 2021

james.wright@ualberta.ca

Optional Material - More on Blind Search

Blind Search Extras

Optional material

Will not be on exams or quizzes

Highly recommend to review it anyway, to increase the depth
and breadth of your learning

® Review main ideas, sample codes
Depth-first Search (dfs)
Breadth-first Search (bfs)
Depth-limited dfs

lterative deepening dfs

Depth-first Search (DFS)

e Visit first child, then child-of-child, etc.

e Backtrack when no more children

e Goes (very) deep very quickly

¢ Minimal memory requirements - only path from root to
current node

e Details e.g. http:
//en.wikipedia.org/wiki/Depth-first_search,
or any algorithms textbook

® See link from our resources page

http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Depth-first_search

Dfs for Treasure Search on Tree

¢ Simpler than on general graph (as e.g. in Cmput 204)

Depth-first search on tree
Returns (found, numNodesSearched)

def dfs(tree, node, treasure):
numNodesSearched = 1
if node == treasure:
return True, numNodesSearched
for child in tree[node]:
found, childNodes = dfs(tree, child, treasure)
numNodesSearched += childNodes
if found:
return True, numNodesSearched
return False, numNodesSearched

Breadth-first Search (BFS)

¢ Blind graph search algorithm

e Data structure: queue (first-in-first-out, FIFO)

e Guaranteed to find solution with shortest number of steps
in graph

® Expands nodes in “onion layers” around the root

e Main problem: queue typically gets very large very quickly

® Details e.9. http://en.wikipedia.org/wiki/
Breadth-first_search, or any algorithms textbook

http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search

Bfs for Treasure Search on Tree

¢ Simpler than on general graph (as e.g. in Cmput 204)

Breadth-first search on tree
Returns (found, numNodesSearched)

def bfs(tree, start, treasure):
numNodesSearched 0
queue = deque ()
queue.append (start)
while len (queue) > O0:
node = queue.popleft();
numNodesSearched += 1
if node == treasure:
return True, numNodesSearched
for child in tree[node]:
queue.append (child)
return False, numNodesSearched

Different Biases of Dfs and Bfs

Dfs is fastest if the path to the treasure always leads
through the first child near the root of the tree. Dfs goes
deep on the first branch, then backtracks.

Bfs is fastest if the path to the treasure is short. Bfs
explores in order of increasing distance from the root

On average over all nodes, those biases cancel out
The expected number of steps is the same

Is there a Dfs with Bfs-like Behavior?

Dfs needs very little memory

Depth-first search can “get lost” in very deep searches,
even if a shallow solution exists

Bfs finds a shortest solution path, but needs much memory
e Can we combine the avantages of both?
Yes, but there is a price to pay

Dfs with Depth Limit

e |dea: add a depth limit to dfs:
dfs (start, maxDepth)

e This will stop search from going down very deep
sequences

e Simple case: we know in advance the depth ds; at which
the solution will be found

e Justrun dfs (start, dso)
¢ Avoid searching any nodes deeper in the tree

e Problem: in practice, may not know the value of dgy
beforehand

¢ Anyway, let’s start with the case where dg,,; is known

Analysis of DFS with Depth Limit

Standard tree model: branching factor b, depth d

Simplest analysis: Complete search of all levels including
d.

We already know how to count this:

d ; bd+1_1
c(b,d)=1+b+..b Zb—

In expectation, we will only need about half of that
In expectation we save about half of the last level

(Optional) exercise: compute the exact expected number
of nodes searched

Hint: it is very slightly different from the “treasure search”

before. We know there is no “treasure” on depths below d.

What is the effect?

lterative Deepening DFS (ID-DFS)

e What to do if dgo is not known in advance?

e |terative deepening idea: call dfs in a loop with increasing
depth limits 0, 1, 2, ...

® dfs(start, 0)

® if not found: dfs(start, 1)

® if not found: dfs(start, 2)

e Stop as soon as goal found (or we run out of time...)

e Combines memory benefit of DFS with shortest path
guarantee of BFS

e QOverhead: needs to re-search lower levels in each iteration

Overhead of ID-DFS

(b d) bd+11 1
Iterative deepening cost, assuming complete searches of
levels 0,1,...,d. Cost: "
ide(b, d) = ¢(b,0) + ¢(b,1) +...c(b,d) = 20 Zp-51 =
1 pa+2_p
51(Cpr — (d+1))
relative cost idc(b d)/c(b, d) approximately

pa+2 bd+1
b-1)? /o=t

For large b, the cost of re-searching lower levels is
relatively small.

The cost of the last level dominates
Examples:
b = 2, overhead factor 2.

b =10, overhead 11%.
b = 100, overhead 1%.

Optional Material - More on Single-Agent
Heuristic Search

Some Big Questions about Heuristic Search

What are the important techniques in heuristic search
today?

What are the important applications?
What are the main established techniques?

How do the new techniques based on exploration and
Monte Carlo methods work?

What are the interesting research challenges?

Some Application Areas

¢ Single-agent search and puzzles
¢ Two player games
¢ Planning

¢ Classical planning
® Probabilistic planning, MDP, POMDP
® Motion planning

Example - Linear Search Problem

You are standing next to a river on a foggy day
You want to find the (single) bridge to cross the river
You don’t know if the bridge is to the left or to the right

It is so foggy you can only see the bridge when right in
front of it

What is a good strategy to find the bridge?
When to turn around and try the other side?

Image source: http://johngalbreathphotography.com/index/images/Travel

http://johngalbreathphotography.com/index/images/Travel

Classical Single Agent Search

e Typical heuristic search algorithms:
o A*
* Weighted A* (WA¥)
® Greedy best-first search (GBFS)
¢ Branch-and-bound
® |ocal search algorithms:
® Hill-climbing
e GSAT, WalkSAT
® Tabu search

Best-first Search

¢ “Informed” search algorithms:
use heuristic to direct search towards goal

e Classic algorithms: A*, Greedy best-first search (GBFS),
weighted A*

¢ Main difference: how to deal with solution costs vs speed

e Optimal: find shortest path, use exact costs

® Greedy search: focus on finding goal as quickly as
possible, ignore costs

® Bounded-optimal: Compromise, satisficing, consider both
costs and search speed to some degree

Common Framework for Best-first Search
Algorithms

&
(]
SN e
2
® ® .7 Goals
Start Node n
g(n) = 245+10=17
h(n)=7

f(n) = g(n) + h(n) = 24
g(n) = cost-so-far

h(n) = heuristic, estimate of cost to nearest goal
f(n) = estimate of total solution cost via n

g(n) is cost of shortest known path from s to n

h(n) heuristic, estimate cost-to-go to closest goal
f(n) priority of expanding n
® Usually a combination of g and h
Best-first algorithms: expand node with smallest f-value

20

Perfect Heuristic and Hillclimbing

.h =13 .h‘ -10
oo
Start h* =15 . Goal

h*=17

h*(n) = perfect heuristic, exact cost to nearest goal
5+13>17, not optimal action
2+15 = 17, optimal action

h*(n): perfect heuristic, true distance to closest goal

If you have h*(n), heuristic search is super easy:
Repeat until goal: go to child with best h* value

This is called the hillclimbing strategy

It is an example of local search

You can hillclimb with any heuristic, but with A* it works
perfectly

Decide next action locally, from a current state

Compare with: random sampling
21

Desirable Properties of Heuristics

Admissible:
never overestimates the true cost

h(n) < h*(n)for alln

Consistent:
for any two neighbors u, v with edge cost ¢(u, v)

h(u) < c(u,v) + h(v)

Consistency is stronger, implies admissibility

Admissibility does not imply consistency

22

Reminder - Dijkstra’s Algorithm for Shortest
Paths

e Standard graph search algorithm, e.g. in Cmput 204
¢ Main ideas:

¢ Put each node ninto a min-priority queue according to
their best known distance from start (g(n))

¢ Keep expanding smallest element from priority queue until
expands goal state

e Update distance to a node when exploring an edge finds a
new, shorter path (or the first path)

e Guaranteed to find a shortest path when edge costs are
non-negative

¢ Blind search algorithm, uses no heuristics

23

Best-first Search Idea

Similar to Dijkstra, but take heuristic into account
f(n) = priority of expanding n

Put nodes into a min-priority queue according to their
f-value

keep expanding smallest-f node until solved
Usually f is some combination of g and h
See examples next slide

24

Popular Choices for f(n)

f = g is Dijkstra - ignores heuristic h
f = g+ hthe A* algorithm
f = h Greedy best-first search (ignore cost-so-far)

f = g + wh weighted A*, with some weight w > 1 on
heuristic

Sometimes you see f = ag + (1 — a)h, it is equivalent

You can also use a combination of multiple different
heuristics

25

Data Structures for Best-first Search

e Open list: a min-priority queue
using f value

e Closed list: the nodes that have
been expanded

¢ Depending on heuristic, may
need to re-expand nodes in
Closed if a shorter path is
discovered later (as in Dijkstra)

Image source:
https://www.youtube.com/

26

https://www.youtube.com/

Best-first Search Pseudocode

BestFirstSearch (G, s)

Closed = {}

» Open = {}

Open.insert (s, h(s))
f(s) = h(s) for root because g(s) = 0
while not Open.empty () :

v = Open.

extract-min ()

Closed.insert (v)

for u in
if not

g (u)

£ (u)
Open.

adj(G, v):

u in Closed \cup Open:
= g(v) + edge-cost (v,u)

g(u) + h(u) # for Ax

insert (u, £ (u))

27

Comments on Best-first Search

¢ Code does not show the case where a new, cheaper path
to a node is discovered
¢ Algorithms differ in how they handle this case
® Ignore
® Re-open: move node back from Closed into Open
® Update node distance but don'’t re-open it
® |t depends on properties of heuristic, and on whether we
need optimal solutions

28

lterative Deepening A* (IDA*)

e Similar idea to ID-DFS

¢ Depth-first search, stop recursion if given bound for f
exceeded

¢ During depth-first search, keep track of smallest f-value
above bound

e Use that smallest f-value as bound for next iteration

* No open list - less memory. No closed list needed either
(but can use it)

e Similar problems with duplicate expansions

29

Branch and Bound

e Exact method for optimization problems
e Here: find a minimum cost solution

e Example: Traveling Salesperson Problem (TSP)

® Salesperson needs to visit n cities
® Given a start point, needs to return here at the end
® Goal: optimize order of visits to minimize length of tour

Image source: https://upload.wikimedia.org

30

https://upload.wikimedia.org

Branch and Bound Algorithm Outline and
Example

e Set of all possible solutions S
® TSP: all permutations of other cities
e Upper bound u on cost of best solution.
® Example: use any inexact method to get some good initial

solution
® TSP example: greedy - always go to the closest unvisited
city
e Branch: Partition S into subsets Sy, Sy, - -+, Sk

® TSP example: pick the first city to visit. S; = all tours that
visit city i first

31

Branch and Bound Algorithm Outline and
Example (2)

e Bound: for each S;, find lower bound /; on the cost of any
solution in that set.

® TSP: costs known for start of tour, plus admissible heuristic
for visiting rest of cities

e Prune: if [; > u, there can be no better solution in S;
® TSP: this is proof that path-so-far was bad

32

Branch and Bound Algorithm Outline and
Example (3)

¢ |f no pruning possible: recursion. Partition S; into even
smaller subsets
® TSP: pick next city on tour
e End of recursion:

e Complete single solution s

e Compute its cost ¢(s).

* |f ¢(s) < u, update u with new best-known solution
® TSP example: complete tour is known

33

Branch and Bound Notes

e [f no initial guess known: use u = .
No pruning until first real solution found
* |n practice, the partitioning step often means refining a
partial solution
® TSP Example: fix next step in partial tour
e How to bound?

® TSP example is typical
® Cost of partial solution + admissible (lower) bound on cost
of solving the “rest”

34

General Techniques for Dealing with Complex
Problems

Four (related) “big ideas”
¢ Divide and conquer
* Approximation
e Abstraction
¢ Relaxation
Most of these ideas are discussed in Polya’s book as well

35

Divide and conquer

Image source:

http://sneezingtiger.com/

sokoban/levels.html

Break problem into smaller
sub-problems

Solve them and combine
solutions

Examples: dynamic
programming, branch and bound

Example: Sokoban puzzle:
solve each “room” separately

36

http://sneezingtiger.com/sokoban/levels.html
http://sneezingtiger.com/sokoban/levels.html

Approximation

Cannot solve exactly? Find a “good” solution instead

Example: irregularly shaped vehicle and obstacles

Approximation: simpler polygons or circles

Questions: how good is the approximation? Is the problem
even still solvable?

Sensor and numerical errors can change the problem

Image source: R. Mojtahedzadeh, MSc thesis, KTH, Sweden

37

Abstraction

Problem too hard to solve exactly? Solve a related simpler
problem instead
Example: path-finding
® Group clusters of nearby states into a single abstract state
* E.g. “Edmonton” vs exact location within the city
Example: ignore details of robot shape, treat it as a single
point, or a sphere
e Uses:

® For “good enough” solutions
® For real-life problems that are too hard to model exactly;
® For generating heuristics

38

Relaxation

¢ |dea: simplify some parts of the problem to make it easier
to solve. Change to an “easier” state space.
e Example:

® Knapsack problem - must either use one item completely,
or not at all.

* Relaxation: allow using a fraction of an item - relaxed
problem is much easier and may help solve original

e Uses:

* Find “relaxed solutions” close to good real solutions;
® Get bounds on the best-possible solution;
® Generate heuristics

39

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Optional Material - More on Blind Search
	Optional Material - More on Single-Agent Heuristic Search

