
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca

Optional Material - More on Blind Search

2

Blind Search Extras

Optional material
Will not be on exams or quizzes
Highly recommend to review it anyway, to increase the depth
and breadth of your learning
• Review main ideas, sample codes
• Depth-first Search (dfs)
• Breadth-first Search (bfs)
• Depth-limited dfs
• Iterative deepening dfs

3

Depth-first Search (DFS)

• Visit first child, then child-of-child, etc.
• Backtrack when no more children
• Goes (very) deep very quickly
• Minimal memory requirements - only path from root to

current node
• Details e.g. http:
//en.wikipedia.org/wiki/Depth-first_search,
or any algorithms textbook
• See link from our resources page

4

http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Depth-first_search

Dfs for Treasure Search on Tree

• Simpler than on general graph (as e.g. in Cmput 204)
Depth-first search on tree
Returns (found, numNodesSearched)

def dfs(tree, node, treasure):
numNodesSearched = 1
if node == treasure:

return True, numNodesSearched
for child in tree[node]:

found, childNodes = dfs(tree, child, treasure)
numNodesSearched += childNodes
if found:

return True, numNodesSearched
return False, numNodesSearched

5

Breadth-first Search (BFS)

• Blind graph search algorithm
• Data structure: queue (first-in-first-out, FIFO)
• Guaranteed to find solution with shortest number of steps

in graph
• Expands nodes in “onion layers” around the root
• Main problem: queue typically gets very large very quickly
• Details e.g. http://en.wikipedia.org/wiki/
Breadth-first_search, or any algorithms textbook

6

http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search

Bfs for Treasure Search on Tree

• Simpler than on general graph (as e.g. in Cmput 204)
Breadth-first search on tree
Returns (found, numNodesSearched)

def bfs(tree, start, treasure):
numNodesSearched = 0
queue = deque()
queue.append(start)
while len(queue) > 0:

node = queue.popleft();
numNodesSearched += 1
if node == treasure:

return True, numNodesSearched
for child in tree[node]:

queue.append(child)
return False, numNodesSearched

7

Different Biases of Dfs and Bfs

• Dfs is fastest if the path to the treasure always leads
through the first child near the root of the tree. Dfs goes
deep on the first branch, then backtracks.
• Bfs is fastest if the path to the treasure is short. Bfs

explores in order of increasing distance from the root
• On average over all nodes, those biases cancel out
• The expected number of steps is the same

8

Is there a Dfs with Bfs-like Behavior?

• Dfs needs very little memory
• Depth-first search can “get lost” in very deep searches,

even if a shallow solution exists
• Bfs finds a shortest solution path, but needs much memory
• Can we combine the avantages of both?
• Yes, but there is a price to pay

9

Dfs with Depth Limit

• Idea: add a depth limit to dfs:
dfs(start, maxDepth)

• This will stop search from going down very deep
sequences
• Simple case: we know in advance the depth dsol at which

the solution will be found
• Just run dfs(start, dsol)

• Avoid searching any nodes deeper in the tree
• Problem: in practice, may not know the value of dsol

beforehand
• Anyway, let’s start with the case where dsol is known

10

Analysis of DFS with Depth Limit

• Standard tree model: branching factor b, depth d
• Simplest analysis: Complete search of all levels including

d .
• We already know how to count this:

c(b,d) = 1 + b + ...bd =
d∑

i=0

bi =
bd+1 − 1

b − 1

• In expectation, we will only need about half of that
• In expectation we save about half of the last level
• (Optional) exercise: compute the exact expected number

of nodes searched
• Hint: it is very slightly different from the “treasure search”

before. We know there is no “treasure” on depths below d .
What is the effect?

11

Iterative Deepening DFS (ID-DFS)

• What to do if dsol is not known in advance?
• Iterative deepening idea: call dfs in a loop with increasing

depth limits 0, 1, 2, ...
• dfs(start, 0)

• if not found: dfs(start, 1)

• if not found: dfs(start, 2)

• ...
• Stop as soon as goal found (or we run out of time...)
• Combines memory benefit of DFS with shortest path

guarantee of BFS
• Overhead: needs to re-search lower levels in each iteration

12

Overhead of ID-DFS

• c(b,d) = bd+1−1
b−1

• Iterative deepening cost, assuming complete searches of
levels 0,1, . . . ,d . Cost:
idc(b,d) = c(b,0) + c(b,1) + . . . c(b,d) =

∑d
i=0

bi+1−1
b−1 =

1
b−1(

bd+2−b
b−1 − (d + 1))

• relative cost idc(b,d)/c(b,d) approximately
bd+2

(b−1)2 /
bd+1

b−1 = b
b−1 .

• For large b, the cost of re-searching lower levels is
relatively small.
• The cost of the last level dominates
• Examples:

b = 2, overhead factor 2.
b = 10, overhead 11%.
b = 100, overhead 1%.

13

Optional Material - More on Single-Agent
Heuristic Search

14

Some Big Questions about Heuristic Search

• What are the important techniques in heuristic search
today?
• What are the important applications?
• What are the main established techniques?
• How do the new techniques based on exploration and

Monte Carlo methods work?
• What are the interesting research challenges?

15

Some Application Areas

• Single-agent search and puzzles
• Two player games
• Planning

• Classical planning
• Probabilistic planning, MDP, POMDP
• Motion planning

16

Example - Linear Search Problem

• You are standing next to a river on a foggy day
• You want to find the (single) bridge to cross the river
• You don’t know if the bridge is to the left or to the right
• It is so foggy you can only see the bridge when right in

front of it
• What is a good strategy to find the bridge?
• When to turn around and try the other side?

Image source: http://johngalbreathphotography.com/index/images/Travel

17

http://johngalbreathphotography.com/index/images/Travel

Classical Single Agent Search

• Typical heuristic search algorithms:
• A*
• Weighted A* (WA*)
• Greedy best-first search (GBFS)
• Branch-and-bound

• Local search algorithms:
• Hill-climbing
• GSAT, WalkSAT
• Tabu search

18

Best-first Search

• “Informed” search algorithms:
use heuristic to direct search towards goal
• Classic algorithms: A*, Greedy best-first search (GBFS),

weighted A*
• Main difference: how to deal with solution costs vs speed

• Optimal: find shortest path, use exact costs
• Greedy search: focus on finding goal as quickly as

possible, ignore costs
• Bounded-optimal: Compromise, satisficing, consider both

costs and search speed to some degree

19

Common Framework for Best-first Search
Algorithms

• g(n) is cost of shortest known path from s to n
• h(n) heuristic, estimate cost-to-go to closest goal
• f (n) priority of expanding n

• Usually a combination of g and h
• Best-first algorithms: expand node with smallest f -value

20

Perfect Heuristic and Hillclimbing

• h∗(n): perfect heuristic, true distance to closest goal
• If you have h∗(n), heuristic search is super easy:
• Repeat until goal: go to child with best h∗ value
• This is called the hillclimbing strategy
• It is an example of local search
• You can hillclimb with any heuristic, but with h∗ it works

perfectly
• Decide next action locally, from a current state
• Compare with: random sampling

21

Desirable Properties of Heuristics

• Admissible:
never overestimates the true cost

h(n) ≤ h∗(n) for all n

• Consistent :
for any two neighbors u, v with edge cost c(u, v)

h(u) ≤ c(u, v) + h(v)

• Consistency is stronger, implies admissibility
• Admissibility does not imply consistency

22

Reminder - Dijkstra’s Algorithm for Shortest
Paths

• Standard graph search algorithm, e.g. in Cmput 204
• Main ideas:
• Put each node n into a min-priority queue according to

their best known distance from start (g(n))
• Keep expanding smallest element from priority queue until

expands goal state
• Update distance to a node when exploring an edge finds a

new, shorter path (or the first path)
• Guaranteed to find a shortest path when edge costs are

non-negative
• Blind search algorithm, uses no heuristics

23

Best-first Search Idea

• Similar to Dijkstra, but take heuristic into account
• f (n) = priority of expanding n
• Put nodes into a min-priority queue according to their

f -value
• keep expanding smallest-f node until solved
• Usually f is some combination of g and h
• See examples next slide

24

Popular Choices for f (n)

• f = g is Dijkstra - ignores heuristic h
• f = g + h the A* algorithm
• f = h Greedy best-first search (ignore cost-so-far)
• f = g + wh weighted A*, with some weight w ≥ 1 on

heuristic
• Sometimes you see f = αg + (1− α)h, it is equivalent
• You can also use a combination of multiple different

heuristics

25

Data Structures for Best-first Search

Image source:
https://www.youtube.com/

• Open list : a min-priority queue
using f value
• Closed list : the nodes that have

been expanded
• Depending on heuristic, may

need to re-expand nodes in
Closed if a shorter path is
discovered later (as in Dijkstra)

26

https://www.youtube.com/

Best-first Search Pseudocode

BestFirstSearch(G,s)
Closed = {}, Open = {}
Open.insert(s, h(s))
f(s) = h(s) for root because g(s) = 0
while not Open.empty():
v = Open.extract-min()
Closed.insert(v)
for u in adj(G, v):

if not u in Closed \cup Open:
g(u) = g(v) + edge-cost(v,u)
f(u) = g(u) + h(u) # for A*
Open.insert(u, f(u))

27

Comments on Best-first Search

• Code does not show the case where a new, cheaper path
to a node is discovered
• Algorithms differ in how they handle this case

• Ignore
• Re-open: move node back from Closed into Open
• Update node distance but don’t re-open it
• It depends on properties of heuristic, and on whether we

need optimal solutions

28

Iterative Deepening A* (IDA*)

• Similar idea to ID-DFS
• Depth-first search, stop recursion if given bound for f

exceeded
• During depth-first search, keep track of smallest f -value

above bound
• Use that smallest f -value as bound for next iteration
• No open list - less memory. No closed list needed either

(but can use it)
• Similar problems with duplicate expansions

29

Branch and Bound

• Exact method for optimization problems
• Here: find a minimum cost solution
• Example: Traveling Salesperson Problem (TSP)

• Salesperson needs to visit n cities
• Given a start point, needs to return here at the end
• Goal: optimize order of visits to minimize length of tour

Image source: https://upload.wikimedia.org

30

https://upload.wikimedia.org

Branch and Bound Algorithm Outline and
Example

• Set of all possible solutions S
• TSP: all permutations of other cities

• Upper bound u on cost of best solution.
• Example: use any inexact method to get some good initial

solution
• TSP example: greedy - always go to the closest unvisited

city
• Branch: Partition S into subsets S1,S2, · · · ,Sk

• TSP example: pick the first city to visit. Si = all tours that
visit city i first

31

Branch and Bound Algorithm Outline and
Example (2)

• Bound: for each Si , find lower bound li on the cost of any
solution in that set.
• TSP: costs known for start of tour, plus admissible heuristic

for visiting rest of cities
• Prune: if li ≥ u, there can be no better solution in Si

• TSP: this is proof that path-so-far was bad

32

Branch and Bound Algorithm Outline and
Example (3)

• If no pruning possible: recursion. Partition Si into even
smaller subsets
• TSP: pick next city on tour

• End of recursion:
• Complete single solution s
• Compute its cost c(s).
• If c(s) < u, update u with new best-known solution
• TSP example: complete tour is known

33

Branch and Bound Notes

• If no initial guess known: use u =∞.
No pruning until first real solution found
• In practice, the partitioning step often means refining a

partial solution
• TSP Example: fix next step in partial tour

• How to bound?
• TSP example is typical
• Cost of partial solution + admissible (lower) bound on cost

of solving the “rest”

34

General Techniques for Dealing with Complex
Problems

Four (related) “big ideas”
• Divide and conquer
• Approximation
• Abstraction
• Relaxation

Most of these ideas are discussed in Polya’s book as well

35

Divide and conquer

Image source:

http://sneezingtiger.com/

sokoban/levels.html

• Break problem into smaller
sub-problems
• Solve them and combine

solutions
• Examples: dynamic

programming, branch and bound
• Example: Sokoban puzzle:

solve each “room” separately

36

http://sneezingtiger.com/sokoban/levels.html
http://sneezingtiger.com/sokoban/levels.html

Approximation

• Cannot solve exactly? Find a “good” solution instead
• Example: irregularly shaped vehicle and obstacles
• Approximation: simpler polygons or circles
• Questions: how good is the approximation? Is the problem

even still solvable?
• Sensor and numerical errors can change the problem

Image source: R. Mojtahedzadeh, MSc thesis, KTH, Sweden

37

Abstraction

• Problem too hard to solve exactly? Solve a related simpler
problem instead
• Example: path-finding

• Group clusters of nearby states into a single abstract state
• E.g. “Edmonton” vs exact location within the city

• Example: ignore details of robot shape, treat it as a single
point, or a sphere
• Uses:

• For “good enough” solutions
• For real-life problems that are too hard to model exactly;
• For generating heuristics

38

Relaxation

• Idea: simplify some parts of the problem to make it easier
to solve. Change to an “easier” state space.
• Example:

• Knapsack problem - must either use one item completely,
or not at all.

• Relaxation: allow using a fraction of an item - relaxed
problem is much easier and may help solve original

• Uses:
• Find “relaxed solutions” close to good real solutions;
• Get bounds on the best-possible solution;
• Generate heuristics

39

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Optional Material - More on Blind Search
	Optional Material - More on Single-Agent Heuristic Search

