
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca


455 Today - Lecture 6

Today’s Topics:
• Go rules revisited - more details
• Profiling Python 3 code
• Improving the performance of our Go code
• Short quiz 3 review

2



Coursework and Uploads

• Assignment 1
• Assignment 1 was due yesterday
• Feedback from TA via email by end of today
• Late/second submission deadline Wednesday 11:55pm
• 20% deduction; best of both submissions
• Second submission allowed for any reason

• Activities Lecture 6
• profiling/optimization exercises

3



Go Rules Revisited

4



Go Rules Revisited

• Goal: tidy up some loose ends regarding rules
• Popular variations in rule sets
• Scoring at end of game
• Full repetition rules

5



Go Rules So Far

• Introduced basic rules
• Showed examples of how to score at the end
• Implemented legal moves and reasonable policy for when

to pass at the end in Go1

• Position repetition: implemented only simple ko

6



Versions of Go Rules

• There are many different versions of Go rules
• All agree on how to handle the vast majority of situations
• Differences in details related to:

• What is a legal move?
• When does the game end?
• How to score the game at the end?
• How to resolve different opinions about scoring?

7



Popular Go Rules

• Chinese, Japanese and Korean rules
• Ing, AGA (American Go Association), New Zealand,

Tromp-Taylor rules
• Most of these again have different versions and revisions

8



Main Differences (1): End of Game and Scoring

• When exactly is the game over?
• Two or three passes
• We use two

• How to score at the end?
• Area scoring: count own stones plus surrounded empty

points
• Territory scoring: count surrounded points plus captured

stones (and prisoners)
• All rules: add komi to score
• We use area scoring
• Easier to implement and play correctly at the end
• In territory scoring, playing inside your surrounded areas

costs points

9



Main Differences (1): End of Game and Scoring

• When exactly is the game over?
• Two or three passes
• We use two

• How to score at the end?
• Area scoring: count own stones plus surrounded empty

points
• Territory scoring: count surrounded points plus captured

stones (and prisoners)
• All rules: add komi to score
• We use area scoring
• Easier to implement and play correctly at the end
• In territory scoring, playing inside your surrounded areas

costs points

9



Main Differences (2): Which Moves are Legal?

• Differences regarding suicide and repetition
• Most rules forbid suicide (we do too)

• Exceptions: e.g. Tromp-Taylor rules
• Repetition: basic ko vs full board repetition

• Our programs only recognize basic ko

10



Review: Repetition Rules - Basic Ko

• From top to middle picture: White can
capture one black stone by playing A

• From middle to bottom picture: Now if
Black captures back one white stone...

• The position would repeat, infinite loop
• This is called a (basic) ko.
• Go rules forbid such repetition

11



Repetition - Longer Loop

A four move loop in
Go. Black passes on
move 3.

• Example of a longer repetition
loop

• This really happens in games
between weaker Go programs

• If White tries to play move 4 in
the corner, it repeats the position
from four moves ago

• If both continue like this, infinite
loop

• Go1 does not recognize or
prevent such repetition

12



Repetition - Triple Ko

A triple ko leading
to a six move long
loop in Go.

13



Full Board Repetition

• Many rule versions forbid that the same board position is
repeated in a game

• In the examples, the last, loop-closing move is illegal
• Such rules are often called superko rules
• They handle complex loops and situations with multiple

active ko

14



Positional vs Situational Superko

• Superko idea: do not repeat the same board position
• What exactly is “the same”?
• Two main answers:
• Positional superko (PSK)

• Ignore whose turn it is, only compare board
• Situational superko (SSK)

• Compare whose turn it is as well as board
• Even more details: how do pass moves affect the repetition

ban?

15



Detecting Superko Repetition

• Simplest but slowest:
• Compare against all previous positions
• Much too slow in practice

• One solution: use hashing to detect potential repetition
• Simple, effective trick (not complete solution):

check if a move has ever been played before
• No details now, some later in search chapter

16



Profiling and Code Optimization

17



Profiling and Code Optimization

• Our Go0 and Go1 Python sample codes are very slow
• They were written for simplicity, not speed
• This is usually a good first approach - see quotes next slide
• Optimization is very important in search, but it can wait a

bit
• We can optimize if and when we need it
• First, look where the time is spent
• Profiling is an easy way to check this

18



Some Famous Quotes

Fred Brooks, The Mythical Man-Month (1975)
The management question, therefore, is not whether to
build a pilot system and throw it away. You will do that.
[...]
Hence plan to throw one away; you will, anyhow.

Don Knuth, Structured Programming with go to Statements
(1974)

We should forget about small efficiencies,
say about 97% of the time:
premature optimization is the root of all evil.

19



Limits of Optimization

• There is often an (approximate) 80-20 rule:
80% of the improvement can come
from 20% of the code

• With search, it can be even higher
• However, Amdahl’s law limits the amount of speedup

Example
• Assume a program spends 80% of its time in one function
• We manage to speed this function up 100x
• Question: How much is the overall speedup?

• Less than 5x

20



Limits of Optimization

• There is often an (approximate) 80-20 rule:
80% of the improvement can come
from 20% of the code

• With search, it can be even higher
• However, Amdahl’s law limits the amount of speedup

Example
• Assume a program spends 80% of its time in one function
• We manage to speed this function up 100x
• Question: How much is the overall speedup?

• Less than 5x

20



Limits of Optimization

• There is often an (approximate) 80-20 rule:
80% of the improvement can come
from 20% of the code

• With search, it can be even higher
• However, Amdahl’s law limits the amount of speedup

Example
• Assume a program spends 80% of its time in one function
• We manage to speed this function up 100x
• Question: How much is the overall speedup?

• Less than 5x

20



Amdahl’s Law

Image source:

https://en.wikipedia.org/wiki/

Amdahl’s_law

• Amdahl’s Law (1967)
• How does speeding up one part

of program speed up the whole?
• Often used for parallel

programming
• Main idea: the parts of the

program that are not optimized
limit the overall speedup

21

https://en.wikipedia.org/wiki/Amdahl's_law
https://en.wikipedia.org/wiki/Amdahl's_law


Amdahl’s Law - Formula

• p = percentage of program that is speeded up
• s = speedup for that part
• Runtime before optimization: 1
• Runtime after optimization: (1 − p) + p/s
• Speedup limit for the whole program:

• limit = 1
(1−p)+p/s

• Simplified version: assume s very large, then p/s is very
small, ignore . . .

• limit ≈ 1
1−p

22



Amdahl’s Law - Example Revisited

• 80% of program speeded up, so p = 0.8
• s = 100 speedup for the optimized function
• Speedup limit for the whole program:

• limit = 1
(1−p)+p/s = 1

(1−0.8)+0.8/100 ≈ 4.81

• Simplified version:

• limit ≈ 1
1−p = 5

23



Profiling

• Define a test that runs your program with a typical workload
• Run it with a special program called profiler
• Profiler tells you details of the program execution
• Profilers can be on the function level or instruction level
• How often was piece of code executed?
• How long did it take?
• Possibly, lower level details such as cache misses

24



Simple Profiling in Python with cProfile -
Code

See code profile_Go1.py

import cProfile
from Go1 import Go1
...
def play_moves():

"""
play 100 random games of 100 moves each
for profiling.
"""
...

cProfile.run("play_moves()")

25



Simple Profiling in Python

• See code profile_Go1.py

• Try it out with
• ./profile_Go1.py > profile.txt

• sort -k 2 -r profile.txt

• This sorts by total time per function
• Try other options for -k to sort by other criteria
• Example: sort -k 1 -r profile.txt

26



Ways of Profiling in Python

• cProfile is a built-in module, no need to install anything
• Downside: overhead of profiling is also measured
• More advanced profilers are available for download:

• Profilehooks
• pycallgraph

See profiling on our Python language page

27



Speeding Up Go1

• Go1 is slow
• For search and simulation, speed is very important
• How to improve the code?
• Both low-level optimizations and better algorithms help
• Case study: a series of improvements to Go1

• Result: Go2 - same algorithm as Go1 but faster

28



Ideal Optimization Procedure

• First, pick a test to measure the speed
• Here: play 100 games on 7 × 7 board
• Repeat:

• Run test games with profiler
• Identify the most expensive functions
• Try to improve them by optimization or better algorithms

29



Profiling Go1

• Profile with cProfile

• Total time: 6.2 seconds
• Worst 5 individual functions listed below

(all in board.py)

Calls Time Name
561025 1.960 neighbors_of_color

2287541 0.680 get_color
610480 0.679 _neighbors

43441 0.662 _block_of
18268 0.405 play_move

30



Profiling Go1

• Also look at cumulative time
• Function itself plus other functions it calls
• Sort by column 4:
sort -k 4 -r profile.txt

• Some interesting functions listed below
(all in board.py)

Calls Cumulative Time Name
10974 4.429 is_legal
25584 3.566 _detect_and_process_capture
43441 3.368 _block_of

561025 3.351 neighbors_of_color
43441 1.359 _has_liberty

31



Strategies for Optimization

• Best: avoid calling a function
• Second best: speed up a function, avoid unneeded

computation
• Here: detecting captures is most expensive

32



Read the Code

• Start by reading the expensive code carefully
• Can we avoid unneeded computation?
• Here: read _has_liberty, neighbors_of_color

def _has_liberty(self, block):
for stone in where1d(block):

empty_nbs = self.neighbors_of_color(
stone, EMPTY)

if empty_nbs:
return True

return False

33



Read the Code

def neighbors_of_color(self, point, color):
nbc = []
for nb in self._neighbors(point):

if self.get_color(nb) == color:
nbc.append(nb)

return nbc

• We do not need to compute the whole list
• Stop if we find one liberty
• neighbors_of_color is still used in other places
• Add a function that is optimized for our task

34



New Version

def find_neighbor_of_color(self, point, color):
for nb in self._neighbors(point):

if self.get_color(nb) == color:
return nb

return None

def _has_liberty(self, block):
for stone in where1d(block):

if self.find_neighbor_of_color(stone, EMPTY) != None:
return True

return False

35



Profiling Again

• Total time reduced from 6.2 to 6 seconds
• Reduction in _has_liberty by calling cheaper
find_neighbor_of_color instead of
neighbors_of_color

• Nice improvement for a little work, but not a huge win
• Can we avoid the many floodfills altogether?
• We do the floodfill for each neighbor of a stone
• We only need to know “does block have at least one

liberty”?
• Can we check that more effectively?

36



Optimizing Floodfill

• We can store such a liberty for each stone s

• In the code: liberty_of[s]
• Check capture: just check if board at location
liberty_of[s] is still empty

• If yes, no floodfill is needed (why?)
• If no, we just played there

• Do floodfill to try to find a different liberty for s
• If success: update liberty_of[s]
• If fail: yes it is a capture

37



Result, and More Floodfill Optimization

• Total time reduced from 6 to 4.4 seconds
• Success!
• Next: try to reduce calls to expensive floodfill functions
• Idea: instead of always computing a block:
• First check the 4 neighbors of the stone if there is a liberty

there
• Result: Total time reduced from 4.4 to 3.7 seconds
• Cost: more complex code, adds special case

38



Profiling Again

Calls Time Name
66323 0.669 find_neighbor_of_color
18645 0.396 play_move
32369 0.367 _is_surrounded

264389 0.321 _neighbors
147455 0.294 neighbors_of_color
828018 0.257 get_color

39



Profiling Again

Calls Time Name
66323 0.669 find_neighbor_of_color
18645 0.396 play_move
32369 0.367 _is_surrounded

264389 0.321 _neighbors
147455 0.294 neighbors_of_color
828018 0.257 get_color

39



Optimizing Neighbors, First Try

def _neighbors(self, point):
return [point-1, point+1,

point-self.NS, point+self.NS]

• Called often: compute list of neighbors of a point
• Each call creates a new list
• Some neighbors are off the board (state BORDER), causing

more tests in code
• Precompute a neighbors array for each point
• Include only on-board neighbors
• Result: EPIC FAIL, runtime over 11 seconds
• Why? board is copied and neighbors array recomputed

over 11000 times

40



Optimizing is_legal

def is_legal(self, point, color):
board_copy = self.copy()
legal = board_copy.play_move(point, color)
return legal

• This function is the reason for FAIL with previous
optimization

• Slow: copy the board, then try to play the candidate move
to see if it is legal

• Solution: Implement is_legal without play_move
• Success! Total time reduced from 4.4 to 2.5 seconds
• Cost: increased code complexity, some redundancy in
is_legal and play_move

41



Details

Calls Time Name
51038 0.528 find_neighbor_of_color
75984 0.288 neighbors_of_color
21163 0.227 _is_surrounded

166427 0.207 _neighbors
495786 0.181 get_color

7418 0.145 play_move
{prev: 18645 0.396 play_move}

• play_move calls: less than half as many
• Many other function calls also significantly reduced

42



Optimizing Neighbors, Second Try

• Now we are no longer copying the board at each legal
move check

• Now the neighbors optimization works beautifully
• Result: Total time reduced from 2.5 to 2 seconds
• Success!
• There are more opportunities to optimize but Martin

stopped here

43



Summary

• Discussed profiling and optimization
• Some concrete case studies
• Overall about 3x faster now, from 6 to 2 seconds on test
• Strategies:

• Save computation
• Precompute
• Compute data incrementally when there are only small

changes
• Catch and handle frequent simple cases early

• Very few optimizations are win-win. The speed often
comes at the cost of code complexity

• Remember Knuth:
premature optimization is the root of all evil

44



Summary

• Discussed profiling and optimization
• Some concrete case studies
• Overall about 3x faster now, from 6 to 2 seconds on test
• Strategies:

• Save computation
• Precompute
• Compute data incrementally when there are only small

changes
• Catch and handle frequent simple cases early

• Very few optimizations are win-win. The speed often
comes at the cost of code complexity

• Remember Knuth:
premature optimization is the root of all evil

44



Quiz 3 Review: Q7

• Quiz 3, Problem Solving and Decision Making & Maybe
We Should Leave That Up to the Computer.

• 79 attempts. Average grade: 91.2%
• Lowest scores: Q7: 73.7%

Q7: George Polya developed the concept of satisficing to
express “good-enough” solutions.

• No. Satisficing was introduced by Herbert Simon.

45



Quiz 3 Review: Q7

• Quiz 3, Problem Solving and Decision Making & Maybe
We Should Leave That Up to the Computer.

• 79 attempts. Average grade: 91.2%
• Lowest scores: Q7: 73.7%

Q7: George Polya developed the concept of satisficing to
express “good-enough” solutions.

• No. Satisficing was introduced by Herbert Simon.

45



Quiz 3: Q21

Q21: After reading the article, do you have any follow-up
questions or comments? For example, what do you want to
learn more about? How does the article relate to the topics
in the outline of this course? How does it relate to other
things you have learned? Which topics or articles do you
want to read next? Etc.

Popular answers:
• Practical applications/examples of computational

decision-making
• Especially models used in finance

• Reinforcement learning
• Mixed human-computer decision-making
• Ethical aspects of computer decision-making
• Automated detection of decision-making going wrong?

46



Quiz 3: Q21

Q21: After reading the article, do you have any follow-up
questions or comments? For example, what do you want to
learn more about? How does the article relate to the topics
in the outline of this course? How does it relate to other
things you have learned? Which topics or articles do you
want to read next? Etc.

Popular answers:
• Practical applications/examples of computational

decision-making
• Especially models used in finance

• Reinforcement learning
• Mixed human-computer decision-making
• Ethical aspects of computer decision-making
• Automated detection of decision-making going wrong?

46


	Intro - Problem Solving for Humans and Computers
	Go Rules Revisited
	Profiling and Code Optimization


