Computing Science (CMPUT) 455

Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta
james.wrightQualberta.ca

Fall 2021

james.wright@ualberta.ca

455 Today - Lecture 5

Today’s Topics:
* More on size of state space, effort of solving a game
¢ Sequential decision-making

Coursework and New Uploads

Quiz 3

* Assignment 1

Reading O’Neil, How algorithms rule our working lives
Activities Lecture 5

Python codes count_dag.py, generate_tree.py,
generate_tree_test.py

Activities 5a and 5b

e Compute size of game trees
e When does a tree grow more quickly?

® When increasing b?
® When increasing d?

e Compare two cases

Size and Structure of State Space for Games

Review: State Space vs Playing and Solving a
Game

e What is the complexity of solving,
or playing well, in a game?
e Depends on many factors:
® Branching factor
® Depth
Existence of a simple strategy
Existence of a mathematical theory
Having master players, master games, books to learn from
Having good heuristics

Review: State Space vs Playing and Solving a
Game

Simple measures of complexity of state space
e Size: how many states?
e Structure: tree, DAG, or DCG?
e Branching factor b
e Depth d

Estimating Search Effort

e Assume we need to visit every state
in order to solve a game

® (Later we will see we can do much better)
How long does it take?
Main factors:

® Speed of program

® Size of state space

Let's look at 7 x 7 Go and Gol

7 x 7 Go - Example

7 x 7 Go, start on empty board

e Assume we can process 1000 states/second
e Assume simplest tree model, b = 49

What depth d can we reach in which time?

e Can we explore the whole state space?

Brute Force Search for 7 x 7 Go

Table: Each row shows the estimated additional effort to search one

level deeper
Depth New states Added search time
0 1 1ms
1 49 50ms
2 492 2.4s
3 493 2 min
4 49* 1.6 hrs
5 49° 3.2 days
6 49° 160 days
7 497 21.5 years

Fighting Exponential Growth

We cannot even search 7 moves deep with Go1l

To solve the game we need to see to the end

This can be over 30 moves deep even for this small board
Time limits in practice

® 5 sec - 5 min per move in a tournament game

* Maybe a few months to solve a game
® How can we succeed?

® Increase speed of program (Lecture 6)
® Decrease branching factor b (now)
® Decrease depth d (later)

Decrease Branching Factor b

¢ Branching factor = growth of number of states per level
* How to decrease?

® Reduce number of moves (but how?)
* Use DAG instead of tree
® Better search algorithms (e.g. alphabeta search)

Decrease Branching Factor b

¢ Branching factor = growth of number of states per level
* How to decrease?
® Reduce number of moves (but how?)
* Use DAG instead of tree
® Better search algorithms (e.g. alphabeta search)
¢ Question: How would using a DAG help decrease the
branching factor?

Decrease Branching Factor b

Branching factor = growth of number of states per level
How to decrease?

® Reduce number of moves (but how?)
* Use DAG instead of tree
® Better search algorithms (e.g. alphabeta search)

Question: How would using a DAG help decrease the
branching factor?

First try: take symmetry into account

Example - Use Symmetry in TicTacToe

AlB
C
e
X|A|B AlX AlB
C|D B|C X
E D|E
7N
o o
X X

At root: Only 3 of 9 total moves are different
® Corner (A), Edge (B), Center (C)
All 6 other moves lead to a symmetric position, same result
asAorB
e Symmetries at tree level 1:

e After corner or edge move: 5 distinct cases
e After center move: 2 distinct cases

Limitation: most symmetries broken after few moves

Symmetry

Typical example to reduce state space by symmetry
Good reduction at depth 1 or 2
Then symmetry breaks

Almost no reduction deeper in the tree

Reduction of whole state space is limited to some constant
factor

® | essthan 8in Go

DAG (Directed Acyclic Graph)

Idea: single node for all
equivalent states

Different paths to same node

Can lead to huge reduction in
state space
Why?
® The whole subtree below is no
longer duplicated

\ / ® Can happen throughout the
® whole game

N
/

—
—
[

Tree vs DAG

Tree model
® Each action leads to a new node
DAG model
® All equivalent states represented by a single node
Reduction in size of state space
e Can be many orders of magnitude
® Examples: Activities 5¢ - 5e
Advantages of DAG model:
Avoid redundant computations
* No copied subtrees or sub-DAGs

Share results of analysis - compute once, re-use often

Limitations of DAG Model

® Main problems:

* Need memory to store and recognize equivalent states
® Some algorithms designed only for trees, not for DAGs

e Example: propagating information up towards root

® Only one path up in tree - efficient
® Many paths in DAG - many ancestors

More Limitations of DAG Model

Limitation: states with different history
e Cannot always merge into one node, not always equivalent
e Example: simple ko - is capture allowed?
* Board looks the same but moves are different

e Can you still do something? Yes. One of Martin’s students
wrote a whole PhD thesis on such questions
(Kishimoto 2005)

Counting States in a DAG

e Simplified GoMoku example,
/ \ also counts illegal states

° ¢ Depth 0: 0 black, 0 white stones
¢ Depth 1: 1 black, 0 white stones
\ { e Depth 2: 1 black, 1 white stones

e Depth 3: 2 black, 1 white stones

¢ Depth d: [d/2] black stones

° and |d/2| white stones

\ / ¢ How many ways to put that
@ many stones on a board with 49

points?

Counting States in a DAG (continued)

Example:

Board with 49 squares

How many different ways to place 5 black stones?
Answer: (¥) = 1,906,884

Need to review the math background? See e.g.
https://en.wikipedia.org/wiki/Combination

20

https://en.wikipedia.org/wiki/Combination

Counting States in a DAG (continued)

e How many different ways to place 5 black stones and 3
white stones?

o Answer: (¥) x (%) = 1,906,884 x 13,244 ~ 25.2 billion
e Why?

* (%) ways to place 5 black stones

® 49 — 5 = 44 empty points remaining

* (%) ways to place the 3 white stones there

® Each different choice for either black or white leads to a

different position, so multiply

21

Activity 5d: Count States in Tic-Tac-Toe DAG

TicTacToe board has 9 squares

Ilgnore symmetry, early wins for now

Atlevel d: [d/2] X’s and |d/2] O’s

Compute number of positions with 0, 1, 2, 3, ..., 9 stones

O stones 0X,00 1 position

1stone 1X,00 9 positions
2stones 1X,10 7? positions
3stones 2X,10 7 positions
4 stones 2 X,20 7? positions
? positions
9stones 5X,40 ? positions

Hint: Python code in count_dag.py is useful...

b Model and DAG

Counted the number of states in a DAG at each depth d
What about the branching factor?
No longer a constant b for whole DAG

Different effective branching factors by
depending for each depth (or level) d
Can compute by at depth d as:

b, — #nodes-at-depth d + 1
d = " #nodes-at-depth d

Activity 5e: compute the effective branching factor
for the TicTacToe DAG

23

Computing Size of State Space in DAG from
Branching Factors

Given branching factors, how many nodes in a DAG?
1 root node at depth 0

bo children of root — by total nodes at depth 1

Each child has by new children

— total by x by nodes at depth 2

Depth n:

by x by x ... x b,_1 nodes

24

Computing Size from Branching Factors
(continued)

¢ Total nodes up to depth d

1

+ by

+ by x by

+ ...
+bg X by X ... X bg_1
® |n general:

no nice closed-form solution for this sum
¢ |n practice:

estimate branching factors b;

® Use search or sampling

¢ Difficult or impossible to compute them exactly for large
games

b? Model vs Reality: Some Case Studies (1)

How realistic is the b? model for size of state space?
We'll look at some popular games
® Go, TicTacToe:
® Roughly, by =~ by — n
* Why? One less empty square with each move
® One less possibility for next move
Not exact:
® |gnores illegal move rules
® Ignores games that end earlier
Setting b, = by — n gives by! leaf nodes
® Earlier TicTacToe example: 9 x 8 x ...1

26

b? Model vs New estimate: 7 x 7 Go

e 7 x 7 Go estimate from Lecture 4:

e 25 moves on average during a game,
game length about 30 moves

Rough b estimate 2530 ~ 1042

New model:

by =49,and by~ by —n

Stop game at n = 30

49 x 48 x ... x (49 — 30) = 49!/18! ~ 104

Still ignores captures, ko, different game lengths,...

27

b? Model vs Reality: Checkers

Image source:

https://en.wikipedia.org

Checkers: complicated b
Beginning: many pieces blocked
Pieces unblocked: b increases
Forced captures: b =1

When pieces get captured,
b decreases again

When checkers become kings,
b strongly increases

Estimated average over typical
game: b~ 2.8

Length of game d varies wildly

28

https://en.wikipedia.org

b? Model vs Reality: Chess

Image source:

https://en.wikipedia.org

Chess: also complicated

Pieces such as queens can
have many moves, but may be
blocked

King in check:

often only few legal moves
When pieces get captured,

b decreases

Estimated average over typical
game: b~ 35

Length of game d varies wildly

29

https://en.wikipedia.org

b? Model vs Reality: Shogi

¢ Shogi, Japanese chess

e Similar to chess, plus:

e Captured opponent pieces
can be reused for yourself
in a future move

e With captures, b increases

Estimated average over typical

game: b~ 92

® b can be several hundred in
endgame with many captured

pieces available for “dropping”
back on board

,,,,,,,,,

(8
&
(€3
(€Y
(€
(€Y
(€3
(€Y
&

===
[l =]
[

E
B

Image source:

https://en.wikipedia.org

30

https://en.wikipedia.org

Complexity of Popular Games

Big table in

https:
//en.wikipedia.org/wiki/Game_complexity
Different measures of complexity

Complexity also depends strongly on size of board

In Go, the theoretical complexity is much higher

* Main reason: capture, play again on same point
® Example: Go0 player fills eyes, games last VERY long
* Game ends only if all moves cause full-board repetition

31

https://en.wikipedia.org/wiki/Game_complexity
https://en.wikipedia.org/wiki/Game_complexity

Example: Solving 2 x 2 Go, 1 x n Go

2 x 2 Example from John Tromp,
https:
//tromp.github.io/java/go/twoxtwo.html
Naive brute force minimax search: trillions of nodes
Alphabeta with bad move ordering:

® 19,397,529 nodes, max. depth 58
Alphabeta with good move ordering:

® 1,446 nodes, max. depth 22
Solving 1 x n Go: Exploring Positional Linear Go
recent paper by Noah Weninger (UofA undergrad!) and
Ryan Hayward (UofA prof) - see resources

32

https://tromp.github.io/java/go/twoxtwo.html
https://tromp.github.io/java/go/twoxtwo.html

Sequential Decision-Making

33

Sequential Decision-Making

Topics:
e From decision making to sequential decision making
¢ Notation for action sequences
¢ View game tree as tree of move sequences

34

From State Space to Decision-Making

¢ We studied state spaces in some detail
¢ Now, how do we find good actions (moves) in a state?
¢ |n general, looking at the current state is not enough

¢ We need to look ahead to future states
in order to make a good decision now

¢ We need to consider sequences of actions,
until we reach a terminal state

® In games, each sequence is one possible way of playing
the game

35

Making Complex Decisions

How to make good decisions?

Consider many alternatives

Consider short-term and long-term consequences
Evaluate different options and choose the best-looking one

Understanding and comparing sequences of actions is the
main step in making such decisions

36

Making Sequential Decisions

Very general model:
Loop:
e Get current state of world
Analyze it
Select an action
Observe the world’s response
If not done: go back to start of loop

Practically important question:

e Can we do this in a simulation model
as opposed to the real world?

37

Single Agent Example:

Path Planning

COLUMBIA

Centennial Centre for

Interdisciplinary Science, Q

- 3h 30min
from 5589 (

Seattle
©

WASHINGTORS MONTA}

v

IDAHO
(=)
@ 26h |
2,715 km
EN o~ p

JTAH

(CEUF

Googleplex

CALIFORNIA
olas Vegas

Image source: Googlemaps

Task: start from here, visit
Google headquarters

First decision:
fly, drive, take the bus, or walk?

If drive or walk: each street
corner is a decision point

Need a long sequence of
decisions to arrive at destination

Is it optimal? Is it good enough?
Tradeoffs: Speed vs cost vs
scenery vs construction sites ...

38

Google maps

Formal Framework

Sequence of states and actions

Start state s

Action a; leads to next state, s;, 1

Keep going until reach a terminal state s,
Sequence (sy, a, S1, a1, ---Sn)

e Sometimes we only write the actions (ag, ai, ...an)

® Example: games where states are determined from game
rules and actions

39

Formal Framework with Rewards

® Formal framework can also include rewards (or costs)

e Simple case (most games we consider):
single reward r at end
* General case: reward r; after each action a;
* Write rewards as part of sequence:
® (sp,a0,r1,51,81, 2, ..., 'n, Sn)

40

Partial Sequences

Full sequence goes all the way to terminal state
Partial sequence can stop after any number of actions

Two full sequences always share a common prefix
In worst case, it might only contain the start state
* Example - Go game
® (sp,Black B3, si, White A2, s,,, Black D4)
® (sp,Black B3, s1, White A4, s,p, Black D4)
e Common prefix (Sp, Black B3, s1)

41

Re-Interpreting the Tree and DAG Models

Our model so far:

State space as a graph
e Nodes are states, edges are actions
Tree and DAG are special cases of graphs

* New view:
we can view the same trees and DAGs
as a way to organize all action sequences

42

Organizing Sequences in Trees

iﬁ/j\‘\# * Consider the (huge) set of al
AN N IR possible state-action sequences
/7';& ##/ﬁjt\#%ﬂ o Organize them such that:
//ﬁ\iﬁg# * Any two sequences share their
g longest common prefix

i
[}

BN o/
: /°
[}

Branch as soon as they differ

Result: we get exactly the tree
representation of the state space

Image source: http://web.emn. fr

43

http://web.emn.fr

Organizing Sequences in a DAG

_/ \ e Similarly, we can relate

o sequences to the DAG model
® e Start with sequences-as-tree

\ { model

® Then, merge two different

hd sequences when they both
& reach equivalent states

\ / * Result: we get exactly the DAG

% representation

44

Summary

Looked at more details and examples of state spaces
Estimating size of state space in DAG model

Theory vs reality: state space of some popular games
Sequential decision-making model

Relation between tree and DAG models, sequences of
decisions

45

Preview - What's Next?

e |ecture 6: profiling and optimization
¢ Topics for next few weeks:

Do we need to look at all possible sequences to make a
decision?

* How do we use the tree or DAG structure?
¢ Algorithms for decision-making in games on tree and DAG

structures

® How do we use heuristics?
¢ Simulation using random sequences of actions

46

	Intro - Problem Solving for Humans and Computers
	Size and Structure of State Space for Games
	Sequential Decision-Making

