
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca


455 Today - Lecture 5

Today’s Topics:
• More on size of state space, effort of solving a game
• Sequential decision-making

2



Coursework and New Uploads

• Quiz 3
• Assignment 1
• Reading O’Neil, How algorithms rule our working lives
• Activities Lecture 5
• Python codes count_dag.py, generate_tree.py,
generate_tree_test.py

3



Activities 5a and 5b

• Compute size of game trees
• When does a tree grow more quickly?

• When increasing b?
• When increasing d?

• Compare two cases

4



Size and Structure of State Space for Games

5



Review: State Space vs Playing and Solving a
Game

• What is the complexity of solving,
or playing well, in a game?
• Depends on many factors:

• Branching factor
• Depth
• Existence of a simple strategy
• Existence of a mathematical theory
• Having master players, master games, books to learn from
• Having good heuristics
• ...

6



Review: State Space vs Playing and Solving a
Game

Simple measures of complexity of state space
• Size: how many states?
• Structure: tree, DAG, or DCG?
• Branching factor b
• Depth d

7



Estimating Search Effort

• Assume we need to visit every state
in order to solve a game
• (Later we will see we can do much better)

• How long does it take?
• Main factors:

• Speed of program
• Size of state space

• Let’s look at 7× 7 Go and Go1

8



7× 7 Go - Example

• 7× 7 Go, start on empty board
• Assume we can process 1000 states/second
• Assume simplest tree model, b = 49
• What depth d can we reach in which time?
• Can we explore the whole state space?

9



Brute Force Search for 7× 7 Go

Table: Each row shows the estimated additional effort to search one
level deeper

Depth New states Added search time
0 1 1ms
1 49 50ms
2 492 2.4s
3 493 2 min
4 494 1.6 hrs
5 495 3.2 days
6 496 160 days
7 497 21.5 years
... ... ...

10



Fighting Exponential Growth

• We cannot even search 7 moves deep with Go1

• To solve the game we need to see to the end
• This can be over 30 moves deep even for this small board
• Time limits in practice

• 5 sec - 5 min per move in a tournament game
• Maybe a few months to solve a game

• How can we succeed?
• Increase speed of program (Lecture 6)
• Decrease branching factor b (now)
• Decrease depth d (later)

11



Decrease Branching Factor b

• Branching factor = growth of number of states per level
• How to decrease?

• Reduce number of moves (but how?)
• Use DAG instead of tree
• Better search algorithms (e.g. alphabeta search)

• Question: How would using a DAG help decrease the
branching factor?
• First try: take symmetry into account

12



Decrease Branching Factor b

• Branching factor = growth of number of states per level
• How to decrease?

• Reduce number of moves (but how?)
• Use DAG instead of tree
• Better search algorithms (e.g. alphabeta search)

• Question: How would using a DAG help decrease the
branching factor?

• First try: take symmetry into account

12



Decrease Branching Factor b

• Branching factor = growth of number of states per level
• How to decrease?

• Reduce number of moves (but how?)
• Use DAG instead of tree
• Better search algorithms (e.g. alphabeta search)

• Question: How would using a DAG help decrease the
branching factor?
• First try: take symmetry into account

12



Example - Use Symmetry in TicTacToe

• At root: Only 3 of 9 total moves are different
• Corner (A), Edge (B), Center (C)

• All 6 other moves lead to a symmetric position, same result
as A or B
• Symmetries at tree level 1:

• After corner or edge move: 5 distinct cases
• After center move: 2 distinct cases

• Limitation: most symmetries broken after few moves
13



Symmetry

• Typical example to reduce state space by symmetry
• Good reduction at depth 1 or 2
• Then symmetry breaks
• Almost no reduction deeper in the tree
• Reduction of whole state space is limited to some constant

factor
• Less than 8 in Go

14



DAG (Directed Acyclic Graph)

• Idea: single node for all
equivalent states
• Different paths to same node
• Can lead to huge reduction in

state space
• Why?

• The whole subtree below is no
longer duplicated

• Can happen throughout the
whole game

15



Tree vs DAG

• Tree model
• Each action leads to a new node

• DAG model
• All equivalent states represented by a single node

• Reduction in size of state space
• Can be many orders of magnitude
• Examples: Activities 5c - 5e

• Advantages of DAG model:
• Avoid redundant computations

• No copied subtrees or sub-DAGs
• Share results of analysis - compute once, re-use often

16



Limitations of DAG Model

• Main problems:
• Need memory to store and recognize equivalent states
• Some algorithms designed only for trees, not for DAGs

• Example: propagating information up towards root
• Only one path up in tree - efficient
• Many paths in DAG - many ancestors

17



More Limitations of DAG Model

Limitation: states with different history
• Cannot always merge into one node, not always equivalent
• Example: simple ko - is capture allowed?
• Board looks the same but moves are different
• Can you still do something? Yes. One of Martin’s students

wrote a whole PhD thesis on such questions
(Kishimoto 2005)

18



Counting States in a DAG

• Simplified GoMoku example,
also counts illegal states
• Depth 0: 0 black, 0 white stones
• Depth 1: 1 black, 0 white stones
• Depth 2: 1 black, 1 white stones
• Depth 3: 2 black, 1 white stones
• Depth d : dd/2e black stones

and bd/2c white stones
• How many ways to put that

many stones on a board with 49
points?

19



Counting States in a DAG (continued)

• Example:
• Board with 49 squares
• How many different ways to place 5 black stones?
• Answer:

(49
5

)
= 1,906,884

• Need to review the math background? See e.g.
https://en.wikipedia.org/wiki/Combination

20

https://en.wikipedia.org/wiki/Combination


Counting States in a DAG (continued)

• How many different ways to place 5 black stones and 3
white stones?
• Answer:

(49
5

)
×
(44

3

)
= 1,906,884× 13,244 ≈ 25.2 billion

• Why?
• (49

5

)
ways to place 5 black stones

• 49− 5 = 44 empty points remaining
• (44

3

)
ways to place the 3 white stones there

• Each different choice for either black or white leads to a
different position, so multiply

21



Activity 5d: Count States in Tic-Tac-Toe DAG

• TicTacToe board has 9 squares
• Ignore symmetry, early wins for now
• At level d : dd/2e X’s and bd/2c O’s
• Compute number of positions with 0, 1, 2, 3, . . . , 9 stones

0 stones 0 X, 0 O 1 position
1 stone 1 X, 0 O 9 positions
2 stones 1 X, 1 O ? positions
3 stones 2 X, 1 O ? positions
4 stones 2 X, 2 O ? positions
. . . ? positions
9 stones 5 X, 4 O ? positions

Hint: Python code in count_dag.py is useful...

22



bd Model and DAG

• Counted the number of states in a DAG at each depth d
• What about the branching factor?
• No longer a constant b for whole DAG
• Different effective branching factors bd

depending for each depth (or level) d
• Can compute bd at depth d as:

bd =
#nodes-at-depth d + 1

#nodes-at-depth d

• Activity 5e: compute the effective branching factor
for the TicTacToe DAG

23



Computing Size of State Space in DAG from
Branching Factors

• Given branching factors, how many nodes in a DAG?
• 1 root node at depth 0
• b0 children of root −→ b0 total nodes at depth 1
• Each child has b1 new children
−→ total b0 × b1 nodes at depth 2
• Depth n:

b0 × b1 × ...× bn−1 nodes

24



Computing Size from Branching Factors
(continued)

• Total nodes up to depth d
1
+b0
+b0 × b1
+ ...
+b0 × b1 × ...× bd−1

• In general:
no nice closed-form solution for this sum
• In practice:

estimate branching factors bi
• Use search or sampling
• Difficult or impossible to compute them exactly for large

games

25



bd Model vs Reality: Some Case Studies (1)

• How realistic is the bd model for size of state space?
• We’ll look at some popular games

• Go, TicTacToe:
• Roughly, bn ≈ b0 − n
• Why? One less empty square with each move
• One less possibility for next move

• Not exact:
• Ignores illegal move rules
• Ignores games that end earlier

• Setting bn = b0 − n gives b0! leaf nodes
• Earlier TicTacToe example: 9× 8× ...1

26



bd Model vs New estimate: 7× 7 Go

• 7× 7 Go estimate from Lecture 4:
• 25 moves on average during a game,

game length about 30 moves
• Rough bd estimate 2530 ≈ 1042

• New model:
• b0 = 49, and bn ≈ b0 − n
• Stop game at n = 30
• 49× 48× ...× (49− 30) = 49!/18! ≈ 1047

• Still ignores captures, ko, different game lengths,...

27



bd Model vs Reality: Checkers

Image source:

https://en.wikipedia.org

• Checkers: complicated b
• Beginning: many pieces blocked
• Pieces unblocked: b increases
• Forced captures: b = 1
• When pieces get captured,

b decreases again
• When checkers become kings,

b strongly increases
• Estimated average over typical

game: b ≈ 2.8
• Length of game d varies wildly

28

https://en.wikipedia.org


bd Model vs Reality: Chess

Image source:

https://en.wikipedia.org

• Chess: also complicated
• Pieces such as queens can

have many moves, but may be
blocked
• King in check:

often only few legal moves
• When pieces get captured,

b decreases
• Estimated average over typical

game: b ≈ 35
• Length of game d varies wildly

29

https://en.wikipedia.org


bd Model vs Reality: Shogi

Image source:

https://en.wikipedia.org

• Shogi, Japanese chess
• Similar to chess, plus:
• Captured opponent pieces

can be reused for yourself
in a future move
• With captures, b increases
• Estimated average over typical

game: b ≈ 92
• b can be several hundred in

endgame with many captured
pieces available for “dropping”
back on board

30

https://en.wikipedia.org


Complexity of Popular Games

• Big table in
https:
//en.wikipedia.org/wiki/Game_complexity

• Different measures of complexity
• Complexity also depends strongly on size of board
• In Go, the theoretical complexity is much higher

• Main reason: capture, play again on same point
• Example: Go0 player fills eyes, games last VERY long
• Game ends only if all moves cause full-board repetition

31

https://en.wikipedia.org/wiki/Game_complexity
https://en.wikipedia.org/wiki/Game_complexity


Example: Solving 2× 2 Go, 1× n Go

• 2× 2 Example from John Tromp,
https:
//tromp.github.io/java/go/twoxtwo.html

• Naive brute force minimax search: trillions of nodes
• Alphabeta with bad move ordering:

• 19,397,529 nodes, max. depth 58
• Alphabeta with good move ordering:

• 1,446 nodes, max. depth 22
• Solving 1× n Go: Exploring Positional Linear Go

recent paper by Noah Weninger (UofA undergrad!) and
Ryan Hayward (UofA prof) - see resources

32

https://tromp.github.io/java/go/twoxtwo.html
https://tromp.github.io/java/go/twoxtwo.html


Sequential Decision-Making

33



Sequential Decision-Making

Topics:
• From decision making to sequential decision making
• Notation for action sequences
• View game tree as tree of move sequences

34



From State Space to Decision-Making

• We studied state spaces in some detail
• Now, how do we find good actions (moves) in a state?
• In general, looking at the current state is not enough
• We need to look ahead to future states

in order to make a good decision now
• We need to consider sequences of actions,

until we reach a terminal state
• In games, each sequence is one possible way of playing

the game

35



Making Complex Decisions

• How to make good decisions?
• Consider many alternatives
• Consider short-term and long-term consequences
• Evaluate different options and choose the best-looking one
• Understanding and comparing sequences of actions is the

main step in making such decisions

36



Making Sequential Decisions

Very general model:

Loop:
• Get current state of world
• Analyze it
• Select an action
• Observe the world’s response
• If not done: go back to start of loop

Practically important question:
• Can we do this in a simulation model

as opposed to the real world?

37



Single Agent Example: Path Planning

Image source: Googlemaps

• Task: start from here, visit
Google headquarters
• First decision:

fly, drive, take the bus, or walk?
• If drive or walk: each street

corner is a decision point
• Need a long sequence of

decisions to arrive at destination
• Is it optimal? Is it good enough?
• Tradeoffs: Speed vs cost vs

scenery vs construction sites ...

38

Google maps


Formal Framework

• Sequence of states and actions
• Start state s0

• Action ai leads to next state, si+1

• Keep going until reach a terminal state sn

• Sequence (s0,a0, s1,a1, ...sn)
• Sometimes we only write the actions (a0,a1, ...an)

• Example: games where states are determined from game
rules and actions

39



Formal Framework with Rewards

• Formal framework can also include rewards (or costs)
• Simple case (most games we consider):

single reward r at end
• General case: reward ri after each action ai

• Write rewards as part of sequence:
• (s0,a0, r1, s1,a1, r2, ..., rn, sn)

40



Partial Sequences

• Full sequence goes all the way to terminal state
• Partial sequence can stop after any number of actions
• Two full sequences always share a common prefix
• In worst case, it might only contain the start state

• Example - Go game
• (s0,Black B3, s1,White A2, s2a,Black D4)
• (s0,Black B3, s1,White A4, s2b,Black D4)
• Common prefix (s0,Black B3, s1)

41



Re-Interpreting the Tree and DAG Models

• Our model so far:
• State space as a graph
• Nodes are states, edges are actions
• Tree and DAG are special cases of graphs

• New view:
we can view the same trees and DAGs
as a way to organize all action sequences

42



Organizing Sequences in Trees

Image source: http://web.emn.fr

• Consider the (huge) set of all
possible state-action sequences
• Organize them such that:
• Any two sequences share their

longest common prefix
• Branch as soon as they differ
• Result: we get exactly the tree

representation of the state space

43

http://web.emn.fr


Organizing Sequences in a DAG

• Similarly, we can relate
sequences to the DAG model
• Start with sequences-as-tree

model
• Then, merge two different

sequences when they both
reach equivalent states
• Result: we get exactly the DAG

representation

44



Summary

• Looked at more details and examples of state spaces
• Estimating size of state space in DAG model
• Theory vs reality: state space of some popular games
• Sequential decision-making model
• Relation between tree and DAG models, sequences of

decisions

45



Preview - What’s Next?

• Lecture 6: profiling and optimization
• Topics for next few weeks:

• Do we need to look at all possible sequences to make a
decision?

• How do we use the tree or DAG structure?
• Algorithms for decision-making in games on tree and DAG

structures
• How do we use heuristics?
• Simulation using random sequences of actions

46


	Intro - Problem Solving for Humans and Computers
	Size and Structure of State Space for Games
	Sequential Decision-Making


