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455 Today - Lecture 4

Topics:
• Formalizing decision making, search and games
• Basic concepts - states, actions, state space
• Examples
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Coursework

• Continue working on assignment 1 (due on Monday)
• Designated submitter: email your team information to a TA

• See assignments page for format
• Activities for Lecture 4
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Lecture 4: Formalizing Decision-Making
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Lecture Topics

• Intro to computer decision-making
• Search, state spaces, state space of a game
• Terminology for state space search
• Types and models of state spaces
• Game trees, bd model
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Decision-making Exercise - Use Computers?

• Could a computer do the same decision-making processes
as you?
• What would a computer need to make similar decisions?

• Knowledge about your problem?
• Knowledge about the world, “common sense”?
• Logical reasoning?
• Optimization?
• Input? Sensors? Memory? Processing power?
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Do you Want Computers to Make Decisions?

• Would you want a computer to
make decisions for you?
• When would you trust it?
• How about computers supporting human decision-making?
• Who is in control?

• Machine?
• Programmer?
• Employer?
• Government?
• Nobody?
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Reasoning - Now vs Future

• Some decision-making considers only the present
• Reflexes
• Intuitive Decisions
• Tasks where looking ahead is not needed

• Example: image recognition
• All relevant knowledge is available now
• Neural net has learned knowledge from many (past)

examples
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Reasoning - Now vs Future

• Much reasoning involves thinking about the future,
in order to make decisions now

• Example: should I take an umbrella to work?
• It is not not raining now
• The forecast predicts rain later today

• Chess example: should I capture this queen?
• It looks good now
• It gets me checkmated 8 moves later
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Decision Making as Search Problem

• Decision making in practice has many complications
• Often, we do not know:

• The possible actions
• The goals of others
• How to evaluate different outcomes
• How to compute with limited resources
• ...

It is difficult to make predictions,
especially about the future.
https://quoteinvestigator.com/2013/10/20/no-predict/

• Where do we start? Simplify. A lot.
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A Simple Setting for Decision-Making

Long list of assumptions:
• The state of the world is completely known at each time
• There are terminal states where we can evaluate the result

precisely, e.g.
• A number: value, score, reward, utility,...
• One of a set of possible outcomes, e.g. {win, loss, draw}

• The possible actions (or moves)
in each state are known
• An action changes the state to a new state in a known,

deterministic way
• No chance element -

no dice rolls, cards drawn, other random events

Question: Do games fit this simple setting?
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Do Games fit Our Simple Setting?

• Single-player (puzzles): often, yes
• Rubik’s cube, solitaire, rushhour, sudoku, crossword

puzzles, 15-puzzle
• Two-player games: our main topic - see separate slide
• Multi-player games: mixed

• Yes: Chinese checkers, ...
• No: most card games,

all dice games,
most family board games, ...
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Do Games fit Our Simple Setting?

• Online and computer games: mostly, no
• Simultaneous moves, often in real time
• Map only partially known
• Complex physics simulations
• Many other complications...
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“Classical” Two Player Games

• Our simple setting, plus:
• Two players, often called Black and White
• Players move alternately: I play, you play, I play,...
• A move instantly changes the state (no duration, no slow

transitions)
• Simplest, most frequent case is zero-sum:

my win is opponent’s loss
• Opposite: cooperative games

• Examples: chess, checkers, Go, Tic-Tac-Toe, ...
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Why Study Decision-Making using “Classical”
Games?

• Simple, controlled environment
• Still hard to solve or play well
• Interesting for many people
• Games and results are easy to understand
• Playing games well requires good decision-making skills
• We can study the core problems of decision-making

without being distracted by too many complications
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Formalizing State Space Search
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Terminology

The next few slides introduce the terms
we use to talk about state space search in general,
and specifically, games.
• game state, state
• state space, game graph, game tree
• board state, position
• move, action
• move sequence, history, game record
• score, value, evaluation, result
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State, Game State

• Complete description of the current situation
• In games: board position or cards etc,

toPlay (whose turn it is)
• State, plus rules of game, allow us to determine

actions (moves)
• Often includes (parts of) history:

• Sequence of moves from start of game to current position

• Question: Is it necessary to have additional history
information in Go?
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Example in Go1

• How is game state represented in Go1?
• In board.py

• Class GoBoard
• Contains 1D array board

• Each array entry contains the color of one point
• Contains field ko_recapture to implement simple ko rule
• current_player (BLACK or WHITE)
• Other fields: name, version,...
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Action, Move

• Leads from one state to another
• Move in games may include toPlay:

color of the player who plays the move
• Alternating play:

• current_player changes after each move
• We do not need to specify color with the move (e.g. can just

store it in the state)
• Move sequence, history, game record:

all moves played in a game
• In Go1: move represented by index of point in array, and

color
• Used e.g. in play_move(point, color)
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State vs History

• When is history needed?
• Depends on rules, structure of search space

• Example: Ko (repetition), legal moves in Go depend on
previous move history
• Example: TicTacToe does not need history
• Compare with Markov Decision Problems (MDP)

in single agent search, Markov property :
• History is irrelevant in MDP
• Current state contains all relevant information
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History-only State?

• How about having only history, no other information in
state?

• Yes, that works in principle
• Rules plus complete history determine the state exactly
• Examples:

• Game records with list of moves
• Sequence of GTP play commands

• It may be inefficient if we always have to replay all actions
from the beginning in order to find the current state
• Some forms of machine learning work with this

representation
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State Space

• A state space is:
• A graph with all the possible states of a problem
• Edges in graph show how states are connected by actions

• State space represented as directed graph G = (V ,E):
• Nodes in V : game states
• Directed edges in E : moves

• Edge e = (s1, s2) contains:
• State s1 before move
• State s2 after move
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State Space Representation - Go1 Example

board1

board2

• State before move:
(board1, to_play = WHITE,
ko_recapture = None, ...)

• Play move: White B1
• State after move:
(board2, to_play = BLACK,
ko_recapture = None, ...)
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Terminal State

• A terminal state has no possible moves (actions)
• No outgoing edges in graph
• The rules of a game decide:

• When is the game over?
(did we reach a terminal state?)

• What is the outcome in a terminal state?
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Terminal State in Go

• Game can end in one of two ways
• A player resigns
• Both players pass in turn

• Most Go players do not keep playing until there are no
legal moves
• Some moves are bad anyway and should not be played

(see Go0 vs Go1)
• Stop playing when the ownership of each point is clear to

both players, then count the score
• Example: Go1.py stops playing when there are only single

point eyes left
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Terminal States and Rewards

• Later, in reinforcement learning, we will talk a lot about
rewards (or costs: negative rewards)
• In many games, the only reward is at the end, in the

terminal state
• Example: +1 if you win, -1 if you lose
• A few games have other, earlier rewards/costs

• Example: blinds and bidding in poker
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Types of State Spaces

Image source:

sciencefair.math.iit.edu

• Assume root at the top is current
state

1. Tree
2. DAG (directed acyclic graph)
3. DCG (directed cyclic graph)
• Tree is easiest for search,

DCG hardest
• Game graph, game tree are

other terms for state space of
games
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Examples of Types of State Spaces

Same Go state
reached with different
move order

• Tic-Tac-Toe: DAG
• Different move order can lead

to same result
• Go without repetition rules: DCG

(cycles exist, e.g. simple ko)
• Go with simple ko rules: still

DCG (longer cycles still exist)
• Go with full repetition rules:

DAG (details later)

• Question: What types of state
space for the following games?
• Chess?
• Checkers?
• GoMoku?
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Complexity of a State Space

• Some measures of game complexity:
• Size of state space
• Branching factor (number of actions in state)
• More on these later

• Difficulty of game can depend on many other things
• Is there a simple strategy?
• A mathematical theory?
• Many master games to learn from?
• Good heuristics?

• Difficulty for humans 6= difficulty for computers
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Game Result

• What is the result when a game is over?
• Simplest: win/loss

• Go with non-integer komi, Nim, . . .
• Many games: win/loss/draw

• Chess, checkers, tic-tac-toe, Go with integer komi,
GoMoku, . . .

• Point-scoring games: size of win matters
• Score, value, evaluation, result:

terms with similar meaning
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Types of Game Representation

• Board representation
• Move history - move list
• Formats:

• Internal representation
• File storage: move list + annotations, e.g. sgf file format

• www.red-bean.com/sgf/
• en.wikipedia.org/wiki/Smart_Game_Format

• Inter-program communication: GTP - Go Text Protocol
• www.lysator.liu.se/~gunnar/gtp/
• Used to connect Go0 etc to GoGui and other tools
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Review - Board Representation

• Many games are grid-based
• 2D array
• 1D array (often faster, standard)
• Bitmaps (sometimes fastest, depends on use case)
• Specialized, e.g. piece list if large board, few pieces.
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Summary - Concepts so Far

• State space search - formal model for decision-making
• Basic general concepts:

states, actions, state space
• In games:

game position, game state, move, game tree/game graph
• Terminal states, result, reward
• Representation of board and moves, internal and external

(file storage, text communication)
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Models of State Spaces
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Models of State Spaces

• How to choose a state space for a decision-making
problem?
• More on Tree, DAG, DCG
• Estimating the size of state space
• Reachable vs unreachable
• Symmetries, equivalent states
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How to Choose States and State Spaces

• State needs all the relevant information
• Make it as simple as possible ...
• ... but not simpler
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Example 1: Simplifying Rewards in States

• Example: a zero-sum game, both players collect rewards
during the game
• Most direct representation:

list of rewards at each move for each player
• Example of state:
([0, 10, 0, 0, 10], [20, 0, -5, 0, 0],
rest-of-state)

• Better: just keep sum of awards so far:
(20, 15, rest-of-state)

• Even better: only keep difference of rewards
(5, rest-of-state)
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Example 1 Discussion

• Why is this representation better?
• All states with same reward difference are equivalent

• The players do not care which of them they are in
• Great reduction in number of states

• If one of the equivalent states is solved, then all are solved
• Idea here: compress history into a single number, add that

to state
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Example 2: Simplifying State in Go

• Consider the simple ko rule in Go
• Need to check if the position is the

same as two moves ago
• Simple way: store the positions,

compare each point on board
• Better way: work out the conditions

when the simple ko rule applies
• We need to only store a single point.

• See ko_recapture in Go1

• Idea here: compress history into
information of a single relevant point,
add that to state
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More on State Spaces - Tree, DAG, DCG

• What are the differences between tree, DAG, DCG?
• If we have a choice, which one to choose?
• We often have a choice!
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State Space - Tree

• Simplest state space model is tree
• Every action leads to new state
• Only one path from root to a node
• We simply ignore it, if different paths

lead to the same situation
• Each copy is a separate state
• Example: Two sequences of Go

moves
• 1. Black B4, 2. White C3, 3. Black D1
• 1. Black D1, 2. White C3, 3. Black B4
• Different sequences, different states in

tree model. Duplication!
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Pros and Cons of Tree

Advantages
• Simplest model
• Single path to each node
• No dependencies

Disadvantages
• Duplication, no re-use of information
• State space can be much larger than needed
• Search can become very inefficient, searches many copies

of equivalent sub-trees
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Size of State Space - Simple Model

• How many states?
• Model:
• Assume a constant branching factor b
• Each interior node in tree has b children
• Assume a uniform depth d
• Each path from root is d actions long
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State Space - Simple Model

• How many nodes?
• 1 root node, 1 = b0 total nodes at depth 0
• b children of root, b1 total nodes at depth 1
• Each child has b new children, total b2 at depth 2
• ...
• Last level bn nodes at depth n
• Total nodes 1 + b + ...bn = (bn+1 − 1)/(b − 1)
• For large b, this is close to bn - last level dominates
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(Bad) Example - Tic Tac Toe

• 9 possible moves, b = 9
• depth at most 9, d = 9
• So about 99 ≈ 387 million nodes?

• Question: Is this an accurate estimate? Why or why not?
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A Better Model?

• Games such as TicTacToe only add stones, never remove
• n choices for first move
• n − 1 for second move, . . .
• Total n × (n − 1)× ...1 = n! possible games
• TicTacToe: 9! = 362,880

• Question: Is this an accurate estimate? Why or why not?
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(Very rough) Example - 7× 7 Go

• 49 moves at start, maybe 25 on average during a game
• Length of game - about 30 moves?
• Rough estimate 2530 ≈ 1042

• Compare with 49! ≈ 1063
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Summary - Models of State Spaces

• State space search - formal model for decision-making
• Basic general concepts: states, actions, state space
• In games: game position, game state, move, game

tree/game graph
• Terminal states, result, reward
• Representation of board and moves, internal and external
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