
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca


455 Today - Lecture 23

• AlphaGo Zero
• USRI Evaluations open Dec 1–Thu Dec 9
• Coursework:

• Work on Assignment 4 (due Tue, Dec 14)
• Reading: AlphaGo Zero paper
• Quiz 12: Reinforcement Learning and AlphaGo

2



USRI (Universal Student Ratings of Instruction)

• You should have received an email
• If not, use this link: https://p20.courseval.net/
etw/ets/et.asp?nxappid=UA2&nxmid=start

• Important part of evaluating this course
• Part of instructor and TA’s annual evaluation
• Please fill it out!

3

https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start
https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start


AlphaGo Zero

• October 2017 article in Nature
• Mastering the game of Go without human knowledge
• New simplified architecture
• Learns entirely from self-play
• No human knowledge beyond the basics such as rules of

game
• Stronger than previous AlphaGo versions
• Far super-human skill

4



Main Technical Changes in AlphaGo Zero

• New training method tailored for improving MCTS
• Self-learning from predicting searched moves and

outcomes
• New network architecture: resnets
• New network architecture: combine policy and value nets

into one net with two “heads”
• Does not need large distributed system anymore, strong

performance on “one machine”

5



Human Knowledge in Zero

• Rules of Go, legal moves
• Hard limit of 19× 19× 2 = 722 moves on game length
• Tromp-Taylor scoring
• Input has same 2-d grid structure as Go board
• Uses rotation and reflection invariance of Go rules for

training
• MCTS search parameters optimized

6



Human Knowledge Not Used in Zero

Some examples of knowledge used in many other Go
programs, but not in Zero
• Avoid eye-filling moves (as in Go1)
• Patterns
• Tactics, atari, selfatari
• Human game records
• Rules for simulation policy

No simulations outside of tree used in Zero
Zero has to learn many of these basics, and then much much
more.

7



AlphaGo Zero’s Search

• Search - still MCTS
• Used in two different ways:

• For learning (new)
• For playing

• The most impressive innovation in Zero is how search is
used to improve learning, and learning in turn improves
search

8



Main Components of AlphaGo Zero -
Knowledge

Knowledge
• All knowledge created by machine learning from self-play
• New network architecture

• Knowledge represented by deep residual neural net
• Combines policy and value nets into one net with two

“heads”
• Both move and position evaluation learned together

• No more simulations (rollouts) to end of game!
• MCTS tree growth controlled only by neural net knowledge

(plus real end of game states reached in the tree)

9



Knowledge Representation

• Deep residual neural network (He et al 2015)
• Learns two types of knowledge simultaneously
• Policy head

• Learns good moves for the search
• Value head

• Learns evaluation function - probability of winning
• Most of network is shared between both (why?)

10



Knowledge Representation

• Deep residual neural network (He et al 2015)
• Learns two types of knowledge simultaneously
• Policy head

• Learns good moves for the search
• Value head

• Learns evaluation function - probability of winning
• Most of network is shared between both (why?)

p

inputs features

10



Knowledge Representation

• Deep residual neural network (He et al 2015)
• Learns two types of knowledge simultaneously
• Policy head

• Learns good moves for the search
• Value head

• Learns evaluation function - probability of winning
• Most of network is shared between both (why?)

V

inputs features

10



Knowledge Representation

• Deep residual neural network (He et al 2015)
• Learns two types of knowledge simultaneously
• Policy head

• Learns good moves for the search
• Value head

• Learns evaluation function - probability of winning
• Most of network is shared between both (why?)

V

inputs features

10



Knowledge Representation

• Deep residual neural network (He et al 2015)
• Learns two types of knowledge simultaneously
• Policy head

• Learns good moves for the search
• Value head

• Learns evaluation function - probability of winning
• Most of network is shared between both (why?)

p

V

inputs features

10



Deep Residual Neural Network (Resnet)

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

Image source: He et al 2015 article

• Main idea: pass output of
previous “block” directly through
• Each block learns a “delta”, a

small change to previous output
• Learning small changes is easier
• Can train really deep nets

efficiently
• >100 layers in image recognition
• In theory, no greater

representational power than
DCNN
• In practice, learns better

11



Two-head Architecture

Image source: All further images from

AlphaGo Zero paper, unless stated

otherwise

(p, v) = fθ(s)

• Deep net
• Input Go position s
• Network weights θ
• Network computes function fθ(s)
• Two outputs: (p, v)

• p vector of move probabilities
p(s,a) for each move a

• v value of s

12



Output 1 of Neural Network: Policy Head

• Learns to predict what the
search would do
• How frequently should each

move be tried in MCTS?
• Learning goal: minimize

cross-entropy between
• Predicted probability of move
• Frequency of move as

selected by MCTS
• Cross-entropy: measures how

well one probability distribution
can predict another

13



Output 2 of Neural Network: Value Head

• Given a Go position
• Computes probability of winning
• Static evaluation function
• Trained from selfplay
• Learning goal: Minimize squared

error between:
• Predicted value v
• Final result z of game

14



MCTS in AlphaGo Zero - Move Selection

• In tree move selection
• Same formulas as in previous

AlphaGo
• Exploitation term Q
• Exploration term u

• Meaning of Q is slightly changed

• Value of simulation ending in
in-tree state s = value head
evaluation of s

• No more simulation beyond
the tree, no more evaluation
component from rollouts

15



MCTS in AlphaGo Zero - Evaluation

• Node s expanded
• Single call to neural net
• (p, v) = fθ(s)
• p = vector of move probabilities,

p(s,a) for all moves a from s
• v estimated value of s

16



Training Pipeline

Self-play

OptimizationEvaluation

• Self-play: generate a collection of self-play game records
by using MCTS + NN as both players
• Optimization: sample from game records to update the

NNs
• Evaluation: play games between updated NN against

previous NN. If the new NN wins 55% or more, replace NN
used to generate self-play games

17



Network Optimization

• Error measured by loss function
• Combines three terms

• Error of policy head (cross entropy)
• Error of value head
• Regularization term to keep size of weights in check

18



MCTS Visit Count and Policy π

Meaning of policy π:
• Run MCTS from some state s
• If move a was played N(s,a) times:
• πt(a) ∝ N(s,a)1/τ

• Probability is proportional to its “exponentiated visit count”
• Temperature parameter τ controls exploration of

low-probability moves
• τ = 1 for early game only, small for rest of game
• What does “proportional” mean?
• Compute values N(s,a)1/τ for all actions a, then divide by

their sum to make them into probabilities

19



Self-Play Games

• Play whole game
• For each state st in game:

• Run MCTS on st
• Sample move to play according to number of simulations it

received
• Note difference to regular MCTS: exploration!
• Regular MCTS would always pick the most-simulated move

(exploitation)

• Finish game, get outcome z (win = +1 or loss = -1)
• Store tuples (st , πt , zt) for learning after end of game

20



Meaning of Tuples

• (st , πt , zt)

• st = state at time step t
• Game = sequence of states s1, s2,...
• πt = probability distribution derived from visit count of

moves in MCTS of st

• zt = result from current player’s point of view
(z or −z, negamax)

21



Learning from Self-Play Games

• After each game
• Randomly sample tuple (s, π, z)

from all tuples stored from the
game
• Adjust net weights θ by gradient

descent:
• (p, v) = fθ(s)
• Make policy p better match π
• Make value v better match z

22



Training Process

• Most tests with 20 block resnet
• 4.9 million self-play games
• 1600 simulations / move in MCTS
• Update net in minibatches of 2048 game positions

23



Zero After 3 Hours of Learning

• Net learned for 3 hours
• Quick game, MCTS with 1600

simulations/move
• Learned about capturing stones
• Plays like human beginner
• Clearly better than random

24



Zero After 70 Hours of Learning

• 70 hours
• Quick game, MCTS with 1600

simulations/move
• Plays super-strong game of Go
• Complex strategies
• Exact score estimates, counting

25



Comparing Early Learning - RL vs SL and
AlphaGo Lee

• After 72 hours of training
• Slow games vs AlphaGo Lee
• 2 hours per game per player
• Zero won 100 - 0

26



Move Prediction

• Move prediction of human
professional moves
• Learning improves, then

plateaus
• Always stays below SL policy

predictions (why?)
• Despite lower stats, most moves

are very “human-like”

27



Predicting the Outcome of Games

• Predict winner of human
professional games
• MSE = mean square error

between value net and real
outcome
• Compare SL and RL value nets
• SL starts with big advantage
• RL becomes much better than

SL with more training

28



Compare Strength with AlphaGo Lee and
Master

• Strongest version - 40 residual blocks instead of 20
• Trained 29 million games, 40 days
• Learning compared to Elo strength of AlphaGo Lee and

AlphaGo Master
• Match Zero 40-block vs Master: 89 wins 11 losses in slow

games
29



Results for Different AlphaGo Versions

• Compares Elo for different
versions of AlphaGo
• Fast games, 5 seconds / move
• Also compares Zero’s “raw

network” vs full Zero
• Raw network:

• Evaluate current state s
• Play highest probability move

from policy head
• No search
• Almost as strong as AlphaGo

Fan (with search)

30



The Importance of Search

• Raw network vs AlphaGo Zero,
5 seconds / move
• With search 2000 Elo stronger
• That’s 20 skill levels...
• Same gap as between top

human professional and weak
club player
• Stronger knowledge makes

search even stronger
• No “diminishing returns”, value

of search remains very high

31



Comparing Network Architectures

• Evaluate Elo strength, move prediction, MSE of game outcomes

• sep (separate networks) vs dual (one net, 2 heads)

• conv (DCNN) vs res (residual net)

• Clear benefit of dual architecture, sharing most of network

• Clear benefit of residual net over DCNN

• Only exception: sep better in move prediction

32



Some Limitations of AlphaGo

• AlphaGo only plays 19× 19 Go with 7.5 komi
• AlphaGo is not perfect - no proofs, “mastering” vs solving

the game
• 5× 5 is still the largest solved square board size, since

2002 http://erikvanderwerf.tengen.nl/5x5/
5x5solved.html

• AlphaGo is not open source - we do not know many of the
details

33

http://erikvanderwerf.tengen.nl/5x5/5x5solved.html
http://erikvanderwerf.tengen.nl/5x5/5x5solved.html


Limitations of an AlphaGo-like Approach to
Problem-Solving

• AlphaGo relies on having a perfect model of the game
• Exact rules of game, perfect scoring of outcome, full state

of game known
• Model is used for creating many millions of self-play games
• Learning relies on having these games
• Big challenge: how to learn without perfect model
• MuZero (2019) addresses this with some success

34



Impact of AlphaGo

• Huge impact in media, outside of core AI community
• Often described as a major step towards “machine

intelligence”
• Remember main limitation - still needs an exact model to

work well

• Next:
• Impact on AI and machine learning in general
• Impact on heuristic search and computer game playing
• Impact on human Go community

35



Impact of AlphaGo

• Huge impact in media, outside of core AI community
• Often described as a major step towards “machine

intelligence”
• Remember main limitation - still needs an exact model to

work well
• Next:

• Impact on AI and machine learning in general
• Impact on heuristic search and computer game playing
• Impact on human Go community

35



Impact on AI and Machine Learning

• Prime example of how combination of search, simulation
and knowledge can achieve spectacular results
• Using deep learning:

• Search improve knowledge
• Knowledge improves search
• Virtuous cycle, positive feedback loop

• Simulation has changed dramatically - in-tree only,
controlled completely by neural net evaluations, no more
rollouts to end of game.
• AlphaGo (Zero) has dramatically shifted the landscape of

what knowledge can do as part of a larger search-based
system

36



Impact on AI and Machine Learning

• 10 years ago, with MCTS there was a similar shift in what
search can do
• After current round of progress driven by knowledge, is it

time for improving search methods again?
• Main questions:

• Which other applications of deep learning can profit from
adding search and simulation?

• Which other applications of heuristic search can profit from
deep learning?

37



Impact on Heuristic Search and Computer
Game-playing

• Dramatic shift to much stronger knowledge
• With each major advance in one of the three areas -

search, knowledge, simulations -
• Need to rethink all heuristic search systems
• AlphaGo is only the beginning
• Much work ahead to fully exploit the power of stronger

knowledge
• Can we learn stronger knowledge for other, harder

problems
• Video games (e.g. Atari games, Starcraft)
• More open real-world problems with less well-defined rules

38



Impact on Human Professional Go Community

• Human professionals study AlphaGo and other AI games
intensely
• Try out many AlphaGo-inspired openings
• Some pros are worried for their jobs
• Less interest in human tournaments?
• Can pro-level phone replace human teachers?

39



Impact on Human Amateur Go Community

• Temporary boost in excitement and visibility for the game
of Go
• Having strong computer opponents (and online play) helps

individuals in small communities without a Go club
• Will cheating become a problem, as in chess?
• Goals:

• Turn programs into tools for teaching Go
• Explain programs’ moves in human terms

40



Impact on Computer Go Community

• Mission accomplished? Game over?
• Taking chess as example

• Public interest in programming Go will fade
• A core group of enthusiasts will keep going
• Everyone will use programs as study tools
• Level of humans will improve from studying with programs

• It is now possible for a single person to write a
professional-level Go program in a year
• Recently, several such new programs

41



Beyond AlphaGo

• Computer Go Today
• Applications to other games
• Other types of applications?
• Current research: improving the techniques

42



Computer Go Today

• Half a dozen professional level Go programs
• Strongest: Tencent’s FineArt

• Can give top human professionals two stones handicap (!)
in fast games

• Computer Go Server for automated testing
• http://www.yss-aya.com/cgos/

• Computer Go Tournaments: http:
//www.computer-go.info/events/index.html

43

http://www.yss-aya.com/cgos/
http://www.computer-go.info/events/index.html
http://www.computer-go.info/events/index.html


Leela Zero

Leela Zero
• Strongest open source Go program:
• Public reimplementation of AlphaGo Zero
• Smaller network for faster learning
• Reached top pro level in a few months, still improving

rapidly
• Community effort, over 400 participants donate CPU and

GPU cycles
• Over 13 million games played
• Improved by 14000 Elo from random play at beginning

44



Leela Zero Learning Curve

Image source: http://zero.sjeng.org

45

http://zero.sjeng.org


Summary

• Reviewed AlphaGo Zero in detail
• Discussed impact, state of computer Go after AlphaGo

46


	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search
	Machine Learning for Heuristic Search

