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455 Today - Lecture 23

¢ AlphaGo Zero
e USRI Evaluations open Dec 1-Thu Dec 9

e Coursework:

® Work on Assignment 4 (due Tue, Dec 14)
® Reading: AlphaGo Zero paper
® Quiz 12: Reinforcement Learning and AlphaGo



USRI (Universal Student Ratings of Instruction)

You should have received an email

If not, use this link: https://p20.courseval .net/
etw/ets/et.asp?nxappid=UA2&nxmid=start

Important part of evaluating this course

Part of instructor and TA’s annual evaluation
Please fill it out!


https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start
https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start

AlphaGo Zero

October 2017 article in Nature

¢ Mastering the game of Go without human knowledge
New simplified architecture

Learns entirely from self-play

No human knowledge beyond the basics such as rules of
game

e Stronger than previous AlphaGo versions
e Far super-human skill



Main Technical Changes in AlphaGo Zero

e New training method tailored for improving MCTS

e Self-learning from predicting searched moves and
outcomes

e New network architecture: resnets
e New network architecture: combine policy and value nets
into one net with two “heads”

* Does not need large distributed system anymore, strong
performance on “one machine”



Human Knowledge in Zero

Rules of Go, legal moves

Hard limit of 19 x 19 x 2 = 722 moves on game length
Tromp-Taylor scoring

Input has same 2-d grid structure as Go board

Uses rotation and reflection invariance of Go rules for
training

MCTS search parameters optimized



Human Knowledge Not Used in Zero

Some examples of knowledge used in many other Go
programs, but not in Zero

Avoid eye-filling moves (as in Go1)
Patterns

Tactics, atari, selfatari

e Human game records

Rules for simulation policy
No simulations outside of tree used in Zero

Zero has to learn many of these basics, and then much much
more.



AlphaGo Zero’s Search

e Search - still MCTS
e Used in two different ways:
* For learning (new)
® For playing
® The most impressive innovation in Zero is how search is
used to improve learning, and learning in turn improves
search



Main Components of AlphaGo Zero -
Knowledge

Knowledge

e All knowledge created by machine learning from self-play
¢ New network architecture

* Knowledge represented by deep residual neural net

® Combines policy and value nets into one net with two
“heads”

® Both move and position evaluation learned together

e No more simulations (rollouts) to end of game!

e MCTS tree growth controlled only by neural net knowledge
(plus real end of game states reached in the tree)



Knowledge Representation

Deep residual neural network (He et al 2015)
Learns two types of knowledge simultaneously
Policy head

® [earns good moves for the search
Value head

® Learns evaluation function - probability of winning

Most of network is shared between both (why?)
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Deep Residual Neural Network (Resnet)

weight layer

Image source: He et al 2015 article

x
identity

Main idea: pass output of
previous “block” directly through

Each block learns a “delta”, a
small change to previous output

Learning small changes is easier

Can train really deep nets
efficiently

>100 layers in image recognition

In theory, no greater
representational power than
DCNN

In practice, learns better



Two-head Architecture

(P, V) = fo(s)
e Deep net
- ", ¢ |nput Go position s

P, i * Network weights 6

i i * Network computes function f(s)
Image source: Al further images from ¢ Two outputs: (p, V)
AlphaGo Zero paper, unless stated ® p vector of move probabilities
otherwise p(s, a) for each move a

e vvalue of s



Output 1 of Neural Network: Policy Head

Learns to predict what the
search would do

How frequently should each
move be tried in MCTS?
Learning goal: minimize
cross-entropy between

® Predicted probability of move

* Frequency of move as

selected by MCTS

Cross-entropy: measures how
well one probability distribution
can predict another



Output 2 of Neural Network: Value Head

Given a Go position
Computes probability of winning
Static evaluation function

Trained from selfplay

Learning goal: Minimize squared
error between:

® Predicted value v

® Final result z of game




MCTS in AlphaGo Zero - Move Selection

¢ In tree move selection
a Select e Same formulas as in previous

L S AlphaGo

® Exploitation term Q

_ﬁ%" e Exploration term u
Q4 “/1;}\0*“ e Meaning of Q is slightly changed
hd ® Value of simulation ending in

evaluation of s

® No more simulation beyond
the tree, no more evaluation
component from rollouts

¢
[
Q+U a}\Q FU in-tree state s = value head
‘o



MCTS in AlphaGo Zero - Evaluation

b Expand and evaluate

Repeat
* Node s expanded
v H ¢ Single call to neural net
K * (p.v)=h(s)
v ﬂ Y M e p = vector of move probabilities,
LN p(s, a) for all moves a from s

(pv) =1y (jﬁ?} H ¢ v estimated value of s



Training Pipeline

f Self-play \l
<::I

e Self-play: generate a collection of self-play game records
by using MCTS + NN as both players

e Optimization: sample from game records to update the
NNs

e Evaluation: play games between updated NN against
previous NN. If the new NN wins 55% or more, replace NN
used to generate self-play games



Network Optimization

e Error measured by loss function
e Combines three terms

® Error of policy head (cross entropy)
® Error of value head
® Regularization term to keep size of weights in check



MCTS Visit Count and Policy =

Meaning of policy :

Run MCTS from some state s

If move a was played N(s, a) times:

mi(a) o N(s,a)'/"

Probability is proportional to its “exponentiated visit count”

Temperature parameter 7 controls exploration of
low-probability moves

7 = 1 for early game only, small for rest of game
What does “proportional” mean?

Compute values N(s, a)'/" for all actions a, then divide by
their sum to make them into probabilities



Self-Play Games

Self-play s,

it e e i

L L) ) z

Play whole game
For each state s; in game:

® Run MCTS on s;
® Sample move to play according to number of simulations it
received

* Note difference to regular MCTS: exploration!
® Regular MCTS would always pick the most-simulated move
(exploitation)

Finish game, get outcome z (win = +1 or loss = -1)
Store tuples (st, ¢, z;) for learning after end of game
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Meaning of Tuples

(st,mt, 2t)

St = state at time step ¢

e Game = sequence of states sy, So,...

m = probability distribution derived from visit count of
moves in MCTS of s;

e z; = result from current player’s point of view
(z or —z, negamax)

21



Learning from Self-Play Games

Neural network training

s,

gooF
® & o
* * *
Py v B V) Py Vo
u u u u u u

e After each game

¢ Randomly sample tuple (s, 7, z)
from all tuples stored from the
game

¢ Adjust net weights 0 by gradient
descent:

i (pa V) = f@(S)
e Make policy p better match =
e Make value v better match z
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Training Process

Most tests with 20 block resnet

4.9 million self-play games

1600 simulations / move in MCTS

Update net in minibatches of 2048 game positions
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Zero After 3 Hours of Learning

e Net learned for 3 hours

e Quick game, MCTS with 1600
simulations/move

e [ earned about capturing stones
® Plays like human beginner
e Clearly better than random
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Zero After 70 Hours of Learning

70 hours

Quick game, MCTS with 1600
simulations/move

Plays super-strong game of Go
e Complex strategies
¢ Exact score estimates, counting

25



Comparing Early Learning - RL vs SL and
AlphaGo Lee

5000

4000

3000

After 72 hours of training
Slow games vs AlphaGo Lee

2000

Elo Rating
=]
8
[ ]

o

om0 e 2 hours per game per player
o ot ‘ e Zerowon 100-0
== Reinforcement Laammg
—S000 (‘ = Supervised Learning
_4000 === AlphaGo Lee

0 10 20 30 40 50 60 70
Training time (hours)



Move Prediction

ﬂ
3
®

Move prediction of human
professional moves
¢ |earning improves, then
plateaus
¢ Always stays below SL policy
predictions (why?)
/ = Sipenieoa oaming ™ ¢ Despite lower stats, most moves
oo m o are very “human-like”

Training time (h)

IS o @
=} S S

Prediction accuracy
on professional moves (%)
w
38
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Predicting the Outcome of Games

0.354

0.304

MSE of professional
game outcomes

0.20 4

0.254

== Reinforcement learning

= Supervised learning

0

10 20 30 40 580 60 70
Training time (h)

Predict winner of human
professional games

MSE = mean square error
between value net and real
outcome

Compare SL and RL value nets
SL starts with big advantage

RL becomes much better than
SL with more training

28



Compare Strength with AlphaGo Lee and
Master

Y
4000
3,000{ /

2,000{ |

1,000

Elo rating

— AlphaGo Zero 40 blocks
-1,000 -+ AlphaGo Master
2,000 --- AlphaGo Lee

0 5 10 15 20 25 30 35 40
Days

e Strongest version - 40 residual blocks instead of 20
e Trained 29 million games, 40 days
Learning compared to Elo strength of AlphaGo Lee and
AlphaGo Master
Match Zero 40-block vs Master: 89 wins 11 losses in slow
games
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Results for Different AlphaGo Versions

Compares Elo for different
versions of AlphaGo

Fast games, 5 seconds / move

Also compares Zero’s “raw
network” vs full Zero

Raw network:
® Evaluate current state s
® Play highest probability move
from policy head
® No search
® Almost as strong as AlphaGo
Fan (with search)
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The Importance of Search

e Raw network vs AlphaGo Zero,

b
5000 5 seconds / move
4000 * With search 2000 Elo stronger
2 4 000 e That's 20 skill levels...
2 2000 ® Same gap as between top
w ' .
000 human professional and weak
’ club player
0
\:‘o{b’@;‘f ¢ Stronger knowledge makes
SFS s search even stronger
QT & W
?‘@Q PTI . »
* No “diminishing returns”, value

of search remains very high
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Comparing Network Architectures
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¢ Evaluate Elo strength, move prediction, MSE of game outcomes
® sep (separate networks) vs dual (one net, 2 heads)

e conv (DCNN) vs res (residual net)

¢ Clear benefit of dual architecture, sharing most of network

¢ Clear benefit of residual net over DCNN

* Only exception: sep better in move prediction
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Some Limitations of AlphaGo

AlphaGo only plays 19 x 19 Go with 7.5 komi

AlphaGo is not perfect - no proofs, “mastering” vs solving
the game

5 x 5 is still the largest solved square board size, since

2002 http://erikvanderwerf.tengen.nl/5x5/
5x5solved.html

AlphaGo is not open source - we do not know many of the
details

33
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Limitations of an AlphaGo-like Approach to
Problem-Solving

AlphaGo relies on having a perfect model of the game

Exact rules of game, perfect scoring of outcome, full state
of game known

Model is used for creating many millions of self-play games
¢ Learning relies on having these games

Big challenge: how to learn without perfect model

MuZero (2019) addresses this with some success
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Impact of AlphaGo

e Huge impact in media, outside of core Al community

e Often described as a major step towards “machine
intelligence”

e Remember main limitation - still needs an exact model to
work well
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Impact of AlphaGo

Huge impact in media, outside of core Al community

Often described as a major step towards “machine
intelligence”

* Remember main limitation - still needs an exact model to
work well
Next:

® |Impact on Al and machine learning in general
® |Impact on heuristic search and computer game playing
® Impact on human Go community
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Impact on Al and Machine Learning

* Prime example of how combination of search, simulation
and knowledge can achieve spectacular results
¢ Using deep learning:
® Search improve knowledge
* Knowledge improves search
® Virtuous cycle, positive feedback loop
e Simulation has changed dramatically - in-tree only,
controlled completely by neural net evaluations, no more
rollouts to end of game.

¢ AlphaGo (Zero) has dramatically shifted the landscape of
what knowledge can do as part of a larger search-based
system
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Impact on Al and Machine Learning

* 10 years ago, with MCTS there was a similar shift in what
search can do

e After current round of progress driven by knowledge, is it
time for improving search methods again?

* Main questions:
* Which other applications of deep learning can profit from
adding search and simulation?
* Which other applications of heuristic search can profit from

deep learning?
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Impact on Heuristic Search and Computer
Game-playing

e Dramatic shift to much stronger knowledge

¢ With each major advance in one of the three areas -
search, knowledge, simulations -

* Need to rethink all heuristic search systems

¢ AlphaGo is only the beginning

e Much work ahead to fully exploit the power of stronger
knowledge

e Can we learn stronger knowledge for other, harder
problems

® Video games (e.g. Atari games, Starcraft)
® More open real-world problems with less well-defined rules
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Impact on Human Professional Go Community

Human professionals study AlphaGo and other Al games
intensely

Try out many AlphaGo-inspired openings

e Some pros are worried for their jobs

Less interest in human tournaments?

Can pro-level phone replace human teachers?
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Impact on Human Amateur Go Community

Temporary boost in excitement and visibility for the game
of Go

Having strong computer opponents (and online play) helps
individuals in small communities without a Go club

Will cheating become a problem, as in chess?

Goals:

® Turn programs into tools for teaching Go
e Explain programs’ moves in human terms

40



Impact on Computer Go Community

Mission accomplished? Game over?
Taking chess as example

® Public interest in programming Go will fade
A core group of enthusiasts will keep going
Everyone will use programs as study tools
Level of humans will improve from studying with programs

It is now possible for a single person to write a
professional-level Go program in a year

Recently, several such new programs

41



Beyond AlphaGo

Computer Go Today

Applications to other games

Other types of applications?

e Current research: improving the techniques
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Computer Go Today

Half a dozen professional level Go programs
Strongest: Tencent’s FineArt

® Can give top human professionals two stones handicap (!)
in fast games

Computer Go Server for automated testing

® http://www.yss—aya.com/cgos/
Computer Go Tournaments: http:
//www.computer—go.info/events/index.html
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Leela Zero

Leela Zero

Strongest open source Go program:

Public reimplementation of AlphaGo Zero

Smaller network for faster learning

Reached top pro level in a few months, still improving
rapidly

Community effort, over 400 participants donate CPU and
GPU cycles

Over 13 million games played

Improved by 14000 Elo from random play at beginning
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Leela Zero Learning Curve

Recent Strength Graph (Full view.)
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Image source: http://zero.sjeng.org


http://zero.sjeng.org

Summary

e Reviewed AlphaGo Zero in detail
¢ Discussed impact, state of computer Go after AlphaGo
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