
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca


455 Today - Lecture 22

• Quiz 11 review
• AlphaGo - overview and early versions
• Coursework:

• Work on Assignment 4 (due Tue, Dec 14)
• Reading: AlphaGo Zero paper
• Quiz 12: Reinforcement Learning and AlphaGo

2



Quiz 11

• 73 attempts, average 93%
• Lowest: Q2: 65%; Q18: 87%

3



Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f (x) = x in your NN?

• Adding more neurons per layer (both width and depth) to
your network no longer increases the capacity of your
network.
• True: Linear combinations of linear functions are linear. In

other words, extra layers and extra weights don’t do
anything.

• Since the derivative of f (x) = x is just f ′(x) = 1, chain rule
is simplified because you can skip the derivative for the
activation function.
• True: E.g., ReLU is f (x) = x for x ≥ 0, so this is actually an

advantage.
• Your NN will no longer be able to perform classification.

• False: If your problem can be linearly classified, your NN
will still work.

4



Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f (x) = x in your NN?
• Adding more neurons per layer (both width and depth) to

your network no longer increases the capacity of your
network.

• True: Linear combinations of linear functions are linear. In
other words, extra layers and extra weights don’t do
anything.

• Since the derivative of f (x) = x is just f ′(x) = 1, chain rule
is simplified because you can skip the derivative for the
activation function.
• True: E.g., ReLU is f (x) = x for x ≥ 0, so this is actually an

advantage.
• Your NN will no longer be able to perform classification.

• False: If your problem can be linearly classified, your NN
will still work.

4



Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f (x) = x in your NN?
• Adding more neurons per layer (both width and depth) to

your network no longer increases the capacity of your
network.
• True: Linear combinations of linear functions are linear. In

other words, extra layers and extra weights don’t do
anything.

• Since the derivative of f (x) = x is just f ′(x) = 1, chain rule
is simplified because you can skip the derivative for the
activation function.
• True: E.g., ReLU is f (x) = x for x ≥ 0, so this is actually an

advantage.
• Your NN will no longer be able to perform classification.

• False: If your problem can be linearly classified, your NN
will still work.

4



Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f (x) = x in your NN?
• Adding more neurons per layer (both width and depth) to

your network no longer increases the capacity of your
network.
• True: Linear combinations of linear functions are linear. In

other words, extra layers and extra weights don’t do
anything.

• Since the derivative of f (x) = x is just f ′(x) = 1, chain rule
is simplified because you can skip the derivative for the
activation function.

• True: E.g., ReLU is f (x) = x for x ≥ 0, so this is actually an
advantage.

• Your NN will no longer be able to perform classification.
• False: If your problem can be linearly classified, your NN

will still work.

4



Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f (x) = x in your NN?
• Adding more neurons per layer (both width and depth) to

your network no longer increases the capacity of your
network.
• True: Linear combinations of linear functions are linear. In

other words, extra layers and extra weights don’t do
anything.

• Since the derivative of f (x) = x is just f ′(x) = 1, chain rule
is simplified because you can skip the derivative for the
activation function.
• True: E.g., ReLU is f (x) = x for x ≥ 0, so this is actually an

advantage.

• Your NN will no longer be able to perform classification.
• False: If your problem can be linearly classified, your NN

will still work.

4



Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f (x) = x in your NN?
• Adding more neurons per layer (both width and depth) to

your network no longer increases the capacity of your
network.
• True: Linear combinations of linear functions are linear. In

other words, extra layers and extra weights don’t do
anything.

• Since the derivative of f (x) = x is just f ′(x) = 1, chain rule
is simplified because you can skip the derivative for the
activation function.
• True: E.g., ReLU is f (x) = x for x ≥ 0, so this is actually an

advantage.
• Your NN will no longer be able to perform classification.

• False: If your problem can be linearly classified, your NN
will still work.

4



Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f (x) = x in your NN?
• Adding more neurons per layer (both width and depth) to

your network no longer increases the capacity of your
network.
• True: Linear combinations of linear functions are linear. In

other words, extra layers and extra weights don’t do
anything.

• Since the derivative of f (x) = x is just f ′(x) = 1, chain rule
is simplified because you can skip the derivative for the
activation function.
• True: E.g., ReLU is f (x) = x for x ≥ 0, so this is actually an

advantage.
• Your NN will no longer be able to perform classification.

• False: If your problem can be linearly classified, your NN
will still work.

4



Question 18

Compared to move evaluation with simple features, Deep
Convolutional NN typically return a larger number of good
moves for one input position.

• False: Deep CNNs typically return a very confident
prediction of a small number of actions, whereas move
evaluation with simple places moderate weight/probability
on a larger number of moves. (why?)

5



Question 18

Compared to move evaluation with simple features, Deep
Convolutional NN typically return a larger number of good
moves for one input position.
• False: Deep CNNs typically return a very confident

prediction of a small number of actions, whereas move
evaluation with simple places moderate weight/probability
on a larger number of moves. (why?)

5



AlphaGo Introduction

• High-level overview
• History of DeepMind and AlphaGo
• AlphaGo components and versions
• Performance measurements
• Games against humans
• Impact, limitations, other applications, future

6



About DeepMind

• Founded 2010 as a startup company
• Bought by Google in 2014
• Based in London, UK, Edmonton (from 2017), Montreal,

Paris
• Expertise in reinforcement learning, deep learning and

search

7



DeepMind and AlphaGo

Image source:

https://www.nature.com

• A DeepMind team developed
AlphaGo 2014-17
• Result: Massive advance in

playing strength of Go programs
• Before AlphaGo: programs

about 3 levels below best
humans
• AlphaGo/Alpha Zero: far

surpassed human skill in Go
• Now: AlphaGo is retired
• Now: Many other super-strong

programs, including open source
• All are based on AlphaGo, Alpha

Zero ideas

8

https://www.nature.com


DeepMind and UAlberta

• UAlberta has deep connections
• Faculty who work part-time or on leave at DeepMind

• Rich Sutton, Michael Bowling, Patrick Pilarski, Csaba
Szepesvari (all part time)

• Many of our former students and postdocs work at
DeepMind
• David Silver - UofA PhD, designer of AlphaGo,

lead of the DeepMind RL and AlphaGo teams
• Aja Huang - UofA postdoc, main AlphaGo programmer
• Many from the computer Poker group

• Some are starting to come back to Canada
(DeepMind Edmonton and Montreal)

9



State of Computer Go before AlphaGo

Summary of previous work, and of our course so far
• Search - MCTS, quite strong
• Simulations - OK, hard to improve
• Knowledge

• Good for move selection
• Considered hopeless for position evaluation

• Strength: about 3 handicap levels below best humans
• Quick progress considered unlikely - see next slide

10



Online Betting Market - Computer Go Program
Beats Human Champion

Image source:

http://www.ideosphere.com/

fx-bin/Claim?claim=GoCh

• Online “play-money” betting
market
• Claim: A machine will be the

best Go player in the world,
sometime before the end of
2020
• Before AlphaGo, chances were

considered low, and falling
• First Nature paper changed it

around completely

11

http://www.ideosphere.com/fx-bin/Claim?claim=GoCh
http://www.ideosphere.com/fx-bin/Claim?claim=GoCh


AlphaGo Versions and Publications

• Worked on Go program for about 2 years, mostly kept
secret
• DCNN paper published in 2015 (see previous lecture)
• Fall 2015

Match AlphaGo Fan vs
European champion Fan Hui (2 dan professional)
• AlphaGo won 5:0 in official games,

lost some other games
• Match kept secret until January 2016

• January 2016
Article in Nature describes this version of AlphaGo

12



AlphaGo Versions and Publications (continued)

• March 2016
Match AlphaGo Lee vs top-level human player Lee Sedol,
wins 4 - 1
• January 2017

AlphaGo Master plays 60 games on internet vs top
humans, wins 60 - 0
• May 2017

Match vs world #1 Ke Jie, wins 3 - 0
AlphaGo retires from match play
• October 2017

AlphaGo Zero article in Nature
Learns without human game knowledge
• December 2017/December 2018

Alpha Zero article preprint/final - chess and shogi

13



AlphaGo Project

Image source: http://sports.sina.

com.cn/go/2016-12-19/

• AlphaGo project was “Big
Science”
• Dozens of developers
• World experts in RL, game tree

search and MCTS, neural nets,
deep learning
• Many millions of dollars in

hardware and computing costs
• Huge engineering effort

14

http://sports.sina.com.cn/go/2016-12-19/
http://sports.sina.com.cn/go/2016-12-19/


AlphaGo vs Fan Hui

Image source:

https://www.geekwire.com/2016/

• Fall 2015 - early AlphaGo
version AlphaGo Fan Hui
• Fan Hui: trained in China,

2 dan professional
• Lives in Europe since 2000,

French citizen
• European champion 2013 - 2015
• AlphaGo beat Fan Hui by 5:0 in

official games
• Fan Hui won some faster,

informal games

15

https://www.geekwire.com/2016/


AlphaGo Article in Nature

Image source:

https://www.nature.com

• Nature and Science are the top
two scientific journals
• Papers on computing science

are rare
• Papers on games are very rare
• Games articles from our dept:

• Checkers Is Solved, Science
2007

• Heads-up limit hold’em poker
is solved, Science 2015

• January 2016
AlphaGo on title page of Nature
• Describes version that beat

Fan Hui

16

https://www.nature.com


AlphaGo Fan Design

As described in January 2016 article in Nature
• Search: MCTS (pretty standard, parallel MCTS)

• Modified UCT combines simulation result and value
network evaluation

• Simulation (rollout) policy: relatively normal
• Uses small, fast network for policy

• Supervised Learning (SL) policy network
• DCNN, similar to their 2015 paper
• Learns move prediction from master games
• Improved in details, more data

17



AlphaGo Fan Design (continued)

• New: strong RL policy network
• Learns by Reinforcement Learning (RL) from self-play

• New: value network
• Learns from labeled game data created by strong RL policy

• Main contributions
• Reinforcement learning for training DCNN policy net
• Value network for state evaluation
• Large, extremely well-engineered learning and playing

system

18



Rollout Policy Network

• Used for simulations in MCTS
• Designed to be simple and fast
• “Linear softmax of small pattern features”
• Probabilistic move selection as in Coulom’s paper, Go4
• Weights trained by RL instead of MM
• Slightly larger patterns/extended features
• 24.2% move prediction rate
• 2µs per move selection (500,000 simulated moves/second)

19



AlphaGo Fan Deep Network Architecture

• Three “big” networks
• SL policy network, RL policy network, RL value network

• Same overall design for all three
• 13-layer deep convolutional NN
• 192 filters in convolutional layers
• 4.8ms evaluation on GPU

• About 200 Evaluations/second/GPU
• More than 2000x slower than simulation policy evaluation
• Can learn and represent much more complex information

20



Input Features for NN

Image

source: AlphaGo paper

• Pretty similar input as previous nets

21



Value Network

• Learn a state evaluation function
• Given a Go position
• Computes probability of winning
• No search, no simulation!
• Learns mapping

• From state s
• To expected outcome E[z] of the game

• Network architecture mostly same as policy nets
• Difference: output layer
• Value net outputs single number: evaluation of s

• Compare policy nets: output = probability distribution

22



AlphaGo Fan Learning Pipeline and Play

• Training Pipeline
• AlphaGo program
• Performance measurements
• Games against humans

23



AlphaGo Fan Training Pipeline

Supervised Learning (SL)
• Rollout policy
• SL policy network

Reinforcement Learning
• RL policy network
• Value network

24



Supervised Learning (SL) Policy Network

• Trained from 30 million positions from the KGS Go Server
• Maximize likelihood of human move
• 57% move prediction when using all simple input features
• 55.7% when using only raw board input
• “Small improvements in accuracy led to large

improvements in playing strength”
• MCTS with this network is already much better than all

previous Go programs

25



RL Policy Network

• Learns from self play
• Learning: adjust weights of net to learn from winner of

each game
• Exactly same network architecture as SL net
• Weights initialized from SL net
• Then plays many millions of games
• Keeps a pool of previous networks as opponents to avoid

overfitting

26



Rewards and RL Training Procedure

• Goal: learn improved weights ρ for current network
• Play full game

• Reward z only at end
• +1 for winning, -1 for losing

• Update weights ρ by stochastic gradient ascent
• Ascent: go in the direction that maximizes expected

outcome of game
• Formula from REINFORCE learning method

(Williams 1992)

27



REINFORCE Update Formula

REINFORCE update formula

∆ρ = α
∂ log pρ(a | s)

∂ρ
z

• ∆ρ .. change in weight ρ
• α step size for gradient ascent
• pρ(a | s) .. probability of playing the move a which was

played in the game from state s
• z .. game result (+1 or -1)

28



RL Policy Network vs Other Go Programs

• Tested RL Policy Network as a standalone player
• No search, only one call to network
• Plays move by sampling from pρ
• Won 80% against SL policy net
• Won 85% vs MCTS Go program pachi which used

100,000 simulations/move (!)

29



Training the Value Net

• Value net computes a function vθ(s)
• Function arguments:

• input state s
• Value net weights θ

• Output: vθ(s) is a single real number
• Training: minimize squared error between

• Value net prediction vθ(s)
• True game outcome zi

Squared error =
∑

i

(vθ(si)− zi)
2

• Measure mean squared error (MSE):
• Squared error / number of training items

30



Training Data for Value Net

• Played 30 million self-play games using the RL policy
player
• Randomly sample one single state s from each game

• Why only one state? Because of overfitting problems
• Label s with the outcome z of the game
• Result: 30 million training points (si , zi)

• Learn the value net by trying to predict zi from si

• This was called “reinforcement learning of value networks”
in the paper
• It is really supervised learning from game data
• Game data was produced by the RL policy

31



MCTS in AlphaGo Fan Player

• Player uses MCTS - search and simulations
• Neural nets used as (very strong) in-tree knowledge

• Policy net guides tree search
• Value net helps evaluate leaf nodes

• 3 values stored on each edge (s,a) of game tree
• Winrate Q, visit count N, prior probability P from policy net

32



In-tree Move Selection

• Choose move which maximizes Q + u
• Winrate Q, exploitation term
• u exploration term, with multiplicative knowledge
• Decay by u = C P

1+N
• Exploration constant C

33



Computing V (sL)

• Value estimate V (sL) of leaf node sL

• V (sL) is weighted average of two different evaluations
• vθ(sL) = Value network evaluation of sL

• zL = win/loss result of single simulation from sL
• Combined by V (sL) = (1− λ)vθ(sL) + λzL

• λ = 0.5, equal weight

34



Which Prior Probability P to Use?

• Remember meaning of knowledge term in MCTS:
• Give prior to good moves that should be searched

• Problem of RL policy in AlphaGo Fan:
• It was optimized to play well
• It learned a very strong prior for a single move
• It was not optimized to produce a good set of moves to

search in MCTS

35



SL vs RL policy network in MCTS

• Search with RL policy was too narrow
• Quality of other candidate moves not as good as in SL

network
• Result: they ended up using the SL policy network,

not the RL policy network in AlphaGo Fan
• SL net worked better in MCTS, even though it is much

weaker in move prediction
• SL net gave a better set of good moves to search, not just

a single strong move
• In AlphaGo Zero, this problem was finally solved by

defining a different learning target for the policy net

36



Evaluation and Parallel Search

• Evaluating policy and value networks is expensive!
• Asynchronous multi-threaded search
• Simulations run on CPUs
• Policy and value networks evaluated on GPUs
• In match vs Fan Hui:

40 search threads, 1,202 CPUs and 176 GPUs

37



Elo Model of Playing Strength

• Numerical rating scale
• Developed for chess
• Works well for many games of skill
• Basic idea: difference in rating corresponds to winning

probability
• In Go, 100 Elo is roughly 1 stone handicap
• Formula: Difference d , win probability 1/(1 + 10d/400)

• Example: 200 Elo stronger = wins about 80% of games

38



AlphaGo Fan Playing Strength -
2016 Nature Paper

Image source: AlphaGo paper 39



Engineering and Technical Contributions

• Massive amounts of self-play
training for the neural networks
• Massive amounts of

testing/tuning
• Parallel training algorithms
• Large-scale parallel

asynchronous search
• Large hardware:
• 1202 CPU, 176 GPU used vs

Fan Hui

40



AlphaGo vs Lee Sedol

Image source:

http://time.com/4257406/

go-google-alphago-lee-sedol/

• 5 game match in March 2016
• First ever match computer vs top

player on 19× 19 board, with no
handicap
• Lee Sedol was the world’s top

Go player for more than a
decade
• Won large number of

international tournaments
• Still very strong at time of match,

about world #3
• AlphaGo won the match 4:1
• Lee won game #4

41

http://time.com/4257406/go-google-alphago-lee-sedol/
http://time.com/4257406/go-google-alphago-lee-sedol/


AlphaGo Movie

Image source: http://www.imdb.

com/title/tt6700846/

• https:
//www.alphagomovie.com

• Story of AlphaGo development
and match vs Lee Sedol
• Director Greg Kohs
• Very good movie, focus on

human aspects

42

http://www.imdb.com/title/tt6700846/
http://www.imdb.com/title/tt6700846/
https://www.alphagomovie.com
https://www.alphagomovie.com


AlphaGo Lee

• Version used for Lee Sedol match, March 2016
• Much more RL training than for Fan Hui match
• Trained from AlphaGo selfplay games,

not from RL policy games anymore
• Larger neural net
• Better hardware to evaluate neural nets
• About 2000 CPU, 48 TPU used
• 1 TPU: maybe 30x faster than 1 GPU
• Strength: 3 handicap stones stronger than AlphaGo Fan in

self-play

43



AlphaGo Master

Image source:

https://unwire.pro/2017/05/25

• Played online end of December
2016 - early January 2017
• 60 fast games, many against top

human players
• Score 60 wins no losses

44

https://unwire.pro/2017/05/25


AlphaGo Master Architecture

• Mostly same architecture as AlphaGo Zero (next lecture)
• Some parts were still the same as in previous AlphaGo,

different from Zero:
• Still uses handcrafted input features
• Still uses rollouts as part of evaluation
• Still uses initialization by SL net

• Reduced hardware:
4 TPU, “single machine”
• Strength:

• Far surpasses humans
• 3 handicap stones stronger than AlphaGo Lee in direct

match

45



AlphaGo vs Ke Jie

Image source:

• Match in May 2017 at “Future of
Go Summit”
• AlphaGo played world #1 Ke Jie
• AlphaGo won 3:0
• Program: similar to AlphaGo

Master
• Also on reduced hardware: 4

TPU, “single machine”

46



Summary

• Discussed the earlier versions of AlphaGo
• AlphaGo Fan, AlphaGo Lee, AlphaGo Master
• Main architecture: MCTS + neural networks for knowledge
• Policy net for biasing in-tree move selection
• Value net plus simulations for evaluating leaf nodes in tree
• Massively parallel implementation on CPU for simulations

+ GPU or TPU for nets
• Quantum leap in performance of Go-playing programs
• Reached, then surpassed level of best human Go players

47


	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search
	Machine Learning for Heuristic Search

