Computing Science (CMPUT) 455

Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta
james.wrightQualberta.ca

Fall 2021

james.wright@ualberta.ca

455 Today - Lecture 22

e Quiz 11 review
¢ AlphaGo - overview and early versions

e Coursework:

® Work on Assignment 4 (due Tue, Dec 14)
® Reading: AlphaGo Zero paper
® Quiz 12: Reinforcement Learning and AlphaGo

Quiz 11

e 73 attempts, average 93%
e |owest: Q2: 65%; Q18: 87%

Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f(x) = x in your NN?

Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f(x) = x in your NN?
e Adding more neurons per layer (both width and depth) to

your network no longer increases the capacity of your
network.

Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f(x) = x in your NN?
¢ Adding more neurons per layer (both width and depth) to
your network no longer increases the capacity of your
network.
® True: Linear combinations of linear functions are linear. In
other words, extra layers and extra weights don’t do
anything.

Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f(x) = x in your NN?

¢ Adding more neurons per layer (both width and depth) to
your network no longer increases the capacity of your
network.
® True: Linear combinations of linear functions are linear. In
other words, extra layers and extra weights don’t do
anything.
¢ Since the derivative of f(x) = x is just f(x) = 1, chain rule
is simplified because you can skip the derivative for the
activation function.

Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f(x) = x in your NN?

¢ Adding more neurons per layer (both width and depth) to
your network no longer increases the capacity of your
network.
® True: Linear combinations of linear functions are linear. In
other words, extra layers and extra weights don’t do
anything.
¢ Since the derivative of f(x) = x is just f(x) = 1, chain rule
is simplified because you can skip the derivative for the
activation function.
* True: E.g., ReLU is f(x) = x for x > 0, so this is actually an
advantage.

Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f(x) = x in your NN?
¢ Adding more neurons per layer (both width and depth) to
your network no longer increases the capacity of your
network.
® True: Linear combinations of linear functions are linear. In
other words, extra layers and extra weights don’t do
anything.
¢ Since the derivative of f(x) = x is just f(x) = 1, chain rule
is simplified because you can skip the derivative for the
activation function.
* True: E.g., ReLU is f(x) = x for x > 0, so this is actually an
advantage.

¢ Your NN will no longer be able to perform classification.

Question 2

Which of the following statements are true when we choose to
use linear activation functions such as f(x) = x in your NN?
¢ Adding more neurons per layer (both width and depth) to
your network no longer increases the capacity of your
network.
® True: Linear combinations of linear functions are linear. In
other words, extra layers and extra weights don’t do
anything.
¢ Since the derivative of f(x) = x is just f(x) = 1, chain rule
is simplified because you can skip the derivative for the
activation function.
* True: E.g., ReLU is f(x) = x for x > 0, so this is actually an
advantage.
¢ Your NN will no longer be able to perform classification.

® False: If your problem can be linearly classified, your NN
will still work.

Question 18

Compared to move evaluation with simple features, Deep
Convolutional NN typically return a larger number of good
moves for one input position.

Question 18

Compared to move evaluation with simple features, Deep
Convolutional NN typically return a larger number of good
moves for one input position.

¢ False: Deep CNNs typically return a very confident
prediction of a small number of actions, whereas move
evaluation with simple places moderate weight/probability
on a larger number of moves. (why?)

AlphaGo Introduction

High-level overview

History of DeepMind and AlphaGo

AlphaGo components and versions
Performance measurements

Games against humans

Impact, limitations, other applications, future

About DeepMind

Q) DeepMind

® Founded 2010 as a startup company
Bought by Google in 2014

Based in London, UK, Edmonton (from 2017), Montreal,
Paris

e Expertise in reinforcement learning, deep learning and
search

DeepMind and AlphaGo

¢ A DeepMind team developed
AlphaGo 2014-17

® Result: Massive advance in
playing strength of Go programs

e Before AlphaGo: programs
about 3 levels below best
humans

¢ AlphaGo/Alpha Zero: far
surpassed human skill in Go

¢ Now: AlphaGo is retired

e Now: Many other super-strong
programs, including open source

¢ All are based on AlphaGo, Alpha
Zero ideas

Image source:

https://www.nature.com

https://www.nature.com

DeepMind and UAlberta

e UAlberta has deep connections
e Faculty who work part-time or on leave at DeepMind
® Rich Sutton, Michael Bowling, Patrick Pilarski, Csaba
Szepesvari (all part time)
e Many of our former students and postdocs work at
DeepMind
® David Silver - UofA PhD, designer of AlphaGo,
lead of the DeepMind RL and AlphaGo teams
® Aja Huang - UofA postdoc, main AlphaGo programmer
® Many from the computer Poker group
e Some are starting to come back to Canada
(DeepMind Edmonton and Montreal)

State of Computer Go before AlphaGo

Summary of previous work, and of our course so far
e Search - MCTS, quite strong

e Simulations - OK, hard to improve
Knowledge

® Good for move selection
® Considered hopeless for position evaluation

Strength: about 3 handicap levels below best humans
Quick progress considered unlikely - see next slide

Online Betting Market - Computer Go Program
Beats Human Champion

100

80

[

40

20

o

Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan
19961 99E2000200Z200420062008201 0201220142016

Image source:
http://www.ideosphere.com/

fx-bin/Claim?claim=GoCh

Online “play-money” betting
market

Claim: A machine will be the
best Go player in the world,
sometime before the end of
2020

Before AlphaGo, chances were
considered low, and falling
First Nature paper changed it
around completely

http://www.ideosphere.com/fx-bin/Claim?claim=GoCh
http://www.ideosphere.com/fx-bin/Claim?claim=GoCh

AlphaGo Versions and Publications

Worked on Go program for about 2 years, mostly kept
secret

DCNN paper published in 2015 (see previous lecture)

Fall 2015

Match AlphaGo Fan vs
European champion Fan Hui (2 dan professional)
® AlphaGo won 5:0 in official games,
lost some other games
® Match kept secret until January 2016
January 2016
Article in Nature describes this version of AlphaGo

AlphaGo Versions and Publications (continued)

e March 2016
Match AlphaGo Lee vs top-level human player Lee Sedol,
wins 4 - 1
e January 2017
AlphaGo Master plays 60 games on internet vs top
humans, wins 60 - 0
e May 2017
Match vs world #1 Ke Jie, wins 3 -0
AlphaGo retires from match play
e QOctober 2017
AlphaGo Zero article in Nature
Learns without human game knowledge
e December 2017/December 2018
Alpha Zero article preprint/final - chess and shogi

AlphaGo Project

Image source: http://sports.sina.

com.cn/go/2016-12-19/

AlphaGo project was “Big
Science”
Dozens of developers

World experts in RL, game tree
search and MCTS, neural nets,
deep learning

Many millions of dollars in
hardware and computing costs

Huge engineering effort

http://sports.sina.com.cn/go/2016-12-19/
http://sports.sina.com.cn/go/2016-12-19/

AlphaGo vs Fan Hui

Image source:

https://www.geekwire.com/2016/

Fall 2015 - early AlphaGo
version AlphaGo Fan Hui

Fan Hui: trained in China,
2 dan professional

Lives in Europe since 2000,
French citizen

European champion 2013 - 2015
AlphaGo beat Fan Hui by 5:0 in
official games

Fan Hui won some faster,
informal games

https://www.geekwire.com/2016/

AlphaGo Article in Nature

m,npm\u PAGE &

ALL 3 YS TEMS GO

Image source:

https://www.nature.com

Nature and Science are the top
two scientific journals

Papers on computing science
are rare

Papers on games are very rare

Games articles from our dept:
® Checkers Is Solved, Science
2007
® Heads-up limit hold’em poker
is solved, Science 2015
January 2016
AlphaGo on title page of Nature

Describes version that beat
Fan Hui

https://www.nature.com

AlphaGo Fan Design

As described in January 2016 article in Nature
e Search: MCTS (pretty standard, parallel MCTS)

* Modified UCT combines simulation result and value
network evaluation

e Simulation (rollout) policy: relatively normal
® Uses small, fast network for policy
e Supervised Learning (SL) policy network

® DCNN, similar to their 2015 paper
® Learns move prediction from master games
® Improved in details, more data

AlphaGo Fan Design (continued)

¢ New: strong RL policy network
® Learns by Reinforcement Learning (RL) from self-play

* New: value network
® [earns from labeled game data created by strong RL policy

e Main contributions
® Reinforcement learning for training DCNN policy net
® Value network for state evaluation
® Large, extremely well-engineered learning and playing
system

Rollout Policy Network

Used for simulations in MCTS

Designed to be simple and fast

“Linear softmax of small pattern features”

Probabilistic move selection as in Coulom’s paper, Go4
Weights trained by RL instead of MM

Slightly larger patterns/extended features

24.2% move prediction rate

® 2.us per move selection (500,000 simulated moves/second)

AlphaGo Fan Deep Network Architecture

Three “big” networks
e Sl policy network, RL policy network, RL value network
e Same overall design for all three
13-layer deep convolutional NN
192 filters in convolutional layers
4.8ms evaluation on GPU

® About 200 Evaluations/second/GPU
* More than 2000x slower than simulation policy evaluation
® Can learn and represent much more complex information

20

Input Features for NN

Extended Data Table 2 | Input features for neural networks

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty
Ones 1 A constant plane filled with 1
Turns since 8 How many turns since a move was played
Liberties 8 Number of liberties (empty adjacent points)
Capture size 8 How many opponent stones would be captured
Self-atari size 8 How many of own stones would be captured
Liberties after move 8 Number of liberties after this move is played
Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness 1 Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0
1

Player color Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features). Image
source: AlphaGo paper

e Pretty similar input as previous nets

21

Value Network

e Learn a state evaluation function
e Given a Go position

e Computes probability of winning
e No search, no simulation!

® Learns mapping

* From state s
* To expected outcome E[z] of the game

e Network architecture mostly same as policy nets

¢ Difference: output layer
¢ Value net outputs single number: evaluation of s
e Compare policy nets: output = probability distribution

22

AlphaGo Fan Learning Pipeline and Play

Training Pipeline

AlphaGo program

Performance measurements

Games against humans

23

AlphaGo Fan Training Pipeline

Supervised Learning (SL)
e Rollout policy
e Sl policy network
Reinforcement Learning
¢ RL policy network
¢ Value network

Rollout policy SL policy network RL policy network ~ Value network Policy network
z
5 Py, @ls)
B
> L s
f 5N $
©

Human expert positio Self-play positior

Y & &

24

Supervised Learning (SL) Policy Network

Trained from 30 million positions from the KGS Go Server
Maximize likelihood of human move

57% move prediction when using all simple input features
55.7% when using only raw board input

“Small improvements in accuracy led to large
improvements in playing strength”

MCTS with this network is already much better than all
previous Go programs

25

RL Policy Network

e |earns from self play

¢ Learning: adjust weights of net to learn from winner of
each game

¢ Exactly same network architecture as SL net
¢ Weights initialized from SL net
¢ Then plays many millions of games

e Keeps a pool of previous networks as opponents to avoid
overfitting

26

Rewards and RL Training Procedure

Goal: learn improved weights p for current network
Play full game

* Reward z only at end

* +1 for winning, -1 for losing
Update weights p by stochastic gradient ascent
Ascent: go in the direction that maximizes expected
outcome of game

¢ Formula from REINFORCE learning method
(Williams 1992)

27

REINFORCE Update Formula

REINFORCE update formula

a8|0gpp(a ‘ S)Z

Ap = 9

® Ap .. change in weight p
« step size for gradient ascent

py(a| s) .. probability of playing the move a which was
played in the game from state s

e z .. game result (+1 or -1)

28

RL Policy Network vs Other Go Programs

Tested RL Policy Network as a standalone player
No search, only one call to network

Plays move by sampling from p,
Won 80% against SL policy net

Won 85% vs MCTS Go program pachi which used
100,000 simulations/move (!)

29

Training the Value Net

Value net computes a function vy(s)
Function arguments:

® input state s
® Value net weights 6

Output: vy(s) is a single real number
Training: minimize squared error between

® Value net prediction v,(s)
® True game outcome z;

Squared error = » "(vy(s;) — zi)?

i

Measure mean squared error (MSE):
e Squared error / number of training items

30

Training Data for Value Net

¢ Played 30 million self-play games using the RL policy
player

¢ Randomly sample one single state s from each game

* Why only one state? Because of overfitting problems

e [abel s with the outcome z of the game

¢ Result: 30 million training points (s;, z;)

e Learn the value net by trying to predict z; from s;

e This was called “reinforcement learning of value networks”
in the paper

e ltis really supervised learning from game data

e Game data was produced by the RL policy

31

MCTS in AlphaGo Fan Player

Player uses MCTS - search and simulations
Neural nets used as (very strong) in-tree knowledge

® Policy net guides tree search
® Value net helps evaluate leaf nodes

3 values stored on each edge (s,a) of game tree

e Winrate Q, visit count N, prior probability P from policy net
B iz
maN Q+ulP) i 1 1od > N
. e o ¥ # /f
Qv Lo "
R N gk
N :
) s

32

In-tree Move Selection

Choose move which maximizes Q + u

Winrate Q, exploitation term

® y exploration term, with multiplicative knowledge
e Decay by u= Cyty
¢ Exploration constant C
a Selection b Expansion c Evaluation d Backup
B B iz
e Q+uP) N

B om o WSRO
T) B

N -5

T

|
() mw

33

Computing V(s;)

Value estimate V(s;) of leaf node s,
V(s.) is weighted average of two different evaluations
vp(s,) = Value network evaluation of s,

z; = win/loss result of single simulation from s;
Combined by V(s;) = (1 — N vp(sL) + Az,
*)\ = 0.5, equal weight

34

Which Prior Probability P to Use?

* Remember meaning of knowledge term in MCTS:
® Give prior to good moves that should be searched
¢ Problem of RL policy in AlphaGo Fan:

* |t was optimized to play well

* [t learned a very strong prior for a single move

® |t was not optimized to produce a good set of moves to
search in MCTS

35

SL vs RL policy network in MCTS

Search with RL policy was too narrow

Quality of other candidate moves not as good as in SL
network

Result: they ended up using the SL policy network,

not the RL policy network in AlphaGo Fan

SL net worked better in MCTS, even though it is much
weaker in move prediction

SL net gave a better set of good moves to search, not just
a single strong move

In AlphaGo Zero, this problem was finally solved by
defining a different learning target for the policy net

36

Evaluation and Parallel Search

Evaluating policy and value networks is expensive!

Asynchronous multi-threaded search
Simulations run on CPUs
Policy and value networks evaluated on GPUs

In match vs Fan Hui:
40 search threads, 1,202 CPUs and 176 GPUs

37

Elo Model of Playing Strength

e Numerical rating scale
® Developed for chess
* Works well for many games of skill

¢ Basic idea: difference in rating corresponds to winning
probability

® In Go, 100 Elo is roughly 1 stone handicap
e Formula: Difference d, win probability 1/(1 4 109/400)
e Example: 200 Elo stronger = wins about 80% of games

38

AlphaGo Fan Playing Strength -
2016 Nature Paper

Elo Rating

a Il N v =
5223 98 37 9
=5 3 =2 R 5 9 & ¢
= > @
Te D I < = o ©
c® O € o o
7O O g
Q 3

)

Image source: AlphaGo paper 39

Engineering and Technical Contributions

® Massive amounts of self-play
training for the neural networks

e Massive amounts of
testing/tuning

¢ Parallel training algorithms

e |Large-scale parallel
asynchronous search

e |Large hardware:

e 1202 CPU, 176 GPU used vs
Fan Hui

40

AlphaGo vs Lee Sedol

Image source:

http://time.com/4257406/ o

go-google-alphago-lee-sedol/

5 game match in March 2016

First ever match computer vs top
player on 19 x 19 board, with no
handicap

Lee Sedol was the world’s top
Go player for more than a
decade

Won large number of
international tournaments

Still very strong at time of match,
about world #3

AlphaGo won the match 4:1
Lee won game #4

41

http://time.com/4257406/go-google-alphago-lee-sedol/
http://time.com/4257406/go-google-alphago-lee-sedol/

AlphaGo Movie

‘qujﬂi;I

ALPHAGO
4]

Image source: http://www.imdb.

com/title/tt6700846/

https:
//www.alphagomovie.com

Story of AlphaGo development
and match vs Lee Sedol

Director Greg Kohs

Very good movie, focus on
human aspects

42

http://www.imdb.com/title/tt6700846/
http://www.imdb.com/title/tt6700846/
https://www.alphagomovie.com
https://www.alphagomovie.com

AlphaGo Lee

e \ersion used for Lee Sedol match, March 2016
¢ Much more RL training than for Fan Hui match

¢ Trained from AlphaGo selfplay games,
not from RL policy games anymore

e Larger neural net

e Better hardware to evaluate neural nets
e About 2000 CPU, 48 TPU used

¢ 1 TPU: maybe 30x faster than 1 GPU

e Strength: 3 handicap stones stronger than AlphaGo Fan in
self-play

43

AlphaGo Master

Image source:

https://unwire.pro/2017/05/25

¢ Played online end of December
2016 - early January 2017

¢ 60 fast games, many against top
human players

e Score 60 wins no losses

44

https://unwire.pro/2017/05/25

AlphaGo Master Architecture

¢ Mostly same architecture as AlphaGo Zero (next lecture)
e Some parts were still the same as in previous AlphaGo,
different from Zero:
e Still uses handcrafted input features
e Still uses rollouts as part of evaluation
e Still uses initialization by SL net
® Reduced hardware:
4 TPU, “single machine”
e Strength:
® Far surpasses humans
® 3 handicap stones stronger than AlphaGo Lee in direct
match

45

AlphaGo vs Ke Jie

Image source:

Match in May 2017 at “Future of
Go Summit”

AlphaGo played world #1 Ke Jie
AlphaGo won 3:0

Program: similar to AlphaGo
Master

Also on reduced hardware: 4
TPU, “single machine”

46

Summary

Discussed the earlier versions of AlphaGo

AlphaGo Fan, AlphaGo Lee, AlphaGo Master

e Main architecture: MCTS + neural networks for knowledge
Policy net for biasing in-tree move selection

Value net plus simulations for evaluating leaf nodes in tree

¢ Massively parallel implementation on CPU for simulations
+ GPU or TPU for nets

Quantum leap in performance of Go-playing programs

Reached, then surpassed level of best human Go players

47

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search
	Machine Learning for Heuristic Search

