
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca

Part V

RL, AlphaGo and Beyond

2

455 Today - Lecture 21

• Introduction to Reinforcement Learning (RL)
• TD-Gammon, an early example of reinforcement learning

with neural nets

Coursework
• Assignment 4 (due Tue, Dec 14)
• Reading and activities: Sutton RL tutorial + slides
• Quiz 11: Neural Networks and Deep Learning

(double length)

3

Reinforcement Learning

• Reinforcement Learning (RL) introduction
• Credit assignment problem
• Learning from rewards and temporal differences
• TD-gammon as early example
• Training by RL
• Deep RL

4

Reinforcement Learning (RL)

• Activity - watch the tutorial and slides by Rich Sutton
• Brief review in class only
• Focus on what we need for AlphaGo
• Discuss Gerry Tesauro’s TD-Gammon program

• Early big success story for RL in heuristic search
• Early example of neural nets in games

5

Basic Concepts of RL

• Observe input St (state of game at time t)
• Produce move, action At
• Observe reward (quality of action) Rt+1

• Note that reward occurs at next timestep
• Often, the reward is delayed
• Games: reward only at end of game

• Interaction produces a trajectory: S0,A0,R1,S1,A1, . . .

48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives some representation
of the environment’s state, St 2 S, and on that basis selects an action, At 2 A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.

4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s0 2 S and r 2 R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S⇥R⇥ S⇥A! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

Image source: [Sutton & Barto 2020]

6

Basic Concepts of RL

• Observe input St (state of game at time t)
• Produce move, action At
• Observe reward (quality of action) Rt+1

• Note that reward occurs at next timestep
• Often, the reward is delayed
• Games: reward only at end of game

• Interaction produces a trajectory: S0,A0,R1,S1,A1, . . .

48 Chapter 3: Finite Markov Decision Processes

these actions and presenting new situations to the agent.1 The environment also gives
rise to rewards, special numerical values that the agent seeks to maximize over time
through its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives some representation
of the environment’s state, St 2 S, and on that basis selects an action, At 2 A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 2 R ⇢ R, and finds itself in a new state, St+1.

4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a finite
number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s0 2 S and r 2 R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s0, r |s, a)
.
= Pr{St =s0, Rt =r | St�1 =s, At�1 =a}, (3.2)

for all s0, s 2 S, r 2 R, and a 2 A(s). The function p defines the dynamics of the MDP.
The dot over the equals sign in the equation reminds us that it is a definition (in this
case of the function p) rather than a fact that follows from previous definitions. The
dynamics function p : S⇥R⇥ S⇥A! [0, 1] is an ordinary deterministic function of four
arguments. The ‘|’ in the middle of it comes from the notation for conditional probability,

1We use the terms agent, environment, and action instead of the engineers’ terms controller, controlled
system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in all
states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

Image source: [Sutton & Barto 2020]

6

RL vs Supervised Learning in Games

Supervised Learning
• Label for each move

• Good/bad, expert move/not expert move
• Learn - minimize prediction error on given data set
• Can use mathematical optimization techniques, e.g.

gradient descent

Reinforcement Learning
• Reward for whole game sequence only
• Learn - try to improve gameplay by trial and error
• Need to solve the credit assignment problem

7

Credit Assignment Problem

• Reward for (possibly long) sequence of decisions
• No direct reward for each single move decision
• How can we tell which moves are good or bad?
• Distribute reward from end of game over all actions
• Difficult problem
• RL provides the most popular answers
• Main idea: if same action happens in many different

sequences, we can learn if it leads to more wins or losses

8

Value Functions

• Extremely widespread approach to solving the credit
assignment problem: value-based reinforcement learning
• Estimate one or both of:

• State-value function:

vπ(s) = E

[
T∑

t=0

γt

Rt

∣∣∣∣∣ S0 = s,At ∼ π(St)

]

• Action-value function:

qπ(s,a) = E

[
T∑

t=0

γt

Rt

∣∣∣∣∣ S0 = s,A0 = a,At>0 ∼ π(St)

]

where π : S → ∆(A) is a stochastic policy

9

Value Functions

• Extremely widespread approach to solving the credit
assignment problem: value-based reinforcement learning
• Estimate one or both of:

• State-value function:

vπ(s) = E

[
T∑

t=0

γtRt

∣∣∣∣∣ S0 = s,At ∼ π(St)

]

• Action-value function:

qπ(s,a) = E

[
T∑

t=0

γtRt

∣∣∣∣∣ S0 = s,A0 = a,At>0 ∼ π(St)

]

where π : S → ∆(A) is a stochastic policy

9

Monte Carlo Reinforcement Learning

qπ(s,a) = E

[
T∑

t=0

Rt

∣∣∣∣∣ S0 = s,A0 = a,At>0 ∼ π(St)

]

• In lecture 12 we already saw how to estimate an
expectation using simulations
• Play out a bunch of games using policy π
• Find the average total return from every trajectory that

starts from s,a

• In fact, we can do better!
• Find average total return from every sub-trajectory that

starts from s,a

10

Monte Carlo Reinforcement Learning

qπ(s,a) = E

[
T∑

t=0

Rt

∣∣∣∣∣ S0 = s,A0 = a,At>0 ∼ π(St)

]

• In lecture 12 we already saw how to estimate an
expectation using simulations
• Play out a bunch of games using policy π
• Find the average total return from every trajectory that

starts from s,a
• In fact, we can do better!
• Find average total return from every sub-trajectory that

starts from s,a

10

Policy Improvement Theorem

qπ(s,a) = E

[
T∑

t=0

Rt

∣∣∣∣∣ S0 = s,A0 = a,At>0 ∼ π(St)

]

• Problem: This procedure only estimates the value of a
state-action pair assuming that all other moves are chosen
according to a known policy π
• If we already knew the optimal π we would be done!

• It turns out that greedily optimizing with respect to any
policy π will produce a new policy that is guaranteed to be
weakly better at every state.

Policy Improvement Theorem
Let π and π′ be any pair of (deterministic**) policies.
If qπ(s, π′(s)) ≥ vπ(s) ∀s ∈ S, then vπ(s) ≥ vπ′(s) ∀s ∈ S.

11

Policy Improvement Theorem

qπ(s,a) = E

[
T∑

t=0

Rt

∣∣∣∣∣ S0 = s,A0 = a,At>0 ∼ π(St)

]

• Problem: This procedure only estimates the value of a
state-action pair assuming that all other moves are chosen
according to a known policy π
• If we already knew the optimal π we would be done!
• It turns out that greedily optimizing with respect to any

policy π will produce a new policy that is guaranteed to be
weakly better at every state.

Policy Improvement Theorem
Let π and π′ be any pair of (deterministic**) policies.
If qπ(s, π′(s)) ≥ vπ(s) ∀s ∈ S, then vπ(s) ≥ vπ′(s) ∀s ∈ S.

11

Policy Iteration

The Policy Improvement Theorem means that you can
construct a new policy by solving credit assignment problem for
an old policy:

1. Initialization: Set π(s) arbitrarily for all s ∈ S
2. Policy Evaluation: Compute estimates V (s) for state values
3. Policy Improvement: New policy chooses action that leads

to highest value of V
4. If policy is stable, stop; else goto 2 using new policy

The new policy is “stable” if it chooses the same actions as the
old one at every state.

Question: What complication am I glossing over here?

12

Policy Iteration

The Policy Improvement Theorem means that you can
construct a new policy by solving credit assignment problem for
an old policy:

1. Initialization: Set π(s) arbitrarily for all s ∈ S

2. Policy Evaluation: Compute estimates V (s) for state values
3. Policy Improvement: New policy chooses action that leads

to highest value of V
4. If policy is stable, stop; else goto 2 using new policy

The new policy is “stable” if it chooses the same actions as the
old one at every state.

Question: What complication am I glossing over here?

12

Policy Iteration

The Policy Improvement Theorem means that you can
construct a new policy by solving credit assignment problem for
an old policy:

1. Initialization: Set π(s) arbitrarily for all s ∈ S
2. Policy Evaluation: Compute estimates V (s) for state values

3. Policy Improvement: New policy chooses action that leads
to highest value of V

4. If policy is stable, stop; else goto 2 using new policy
The new policy is “stable” if it chooses the same actions as the
old one at every state.

Question: What complication am I glossing over here?

12

Policy Iteration

The Policy Improvement Theorem means that you can
construct a new policy by solving credit assignment problem for
an old policy:

1. Initialization: Set π(s) arbitrarily for all s ∈ S
2. Policy Evaluation: Compute estimates V (s) for state values
3. Policy Improvement: New policy chooses action that leads

to highest value of V

4. If policy is stable, stop; else goto 2 using new policy
The new policy is “stable” if it chooses the same actions as the
old one at every state.

Question: What complication am I glossing over here?

12

Policy Iteration

The Policy Improvement Theorem means that you can
construct a new policy by solving credit assignment problem for
an old policy:

1. Initialization: Set π(s) arbitrarily for all s ∈ S
2. Policy Evaluation: Compute estimates V (s) for state values
3. Policy Improvement: New policy chooses action that leads

to highest value of V
4. If policy is stable, stop; else goto 2 using new policy

The new policy is “stable” if it chooses the same actions as the
old one at every state.

Question: What complication am I glossing over here?

12

Policy Iteration

The Policy Improvement Theorem means that you can
construct a new policy by solving credit assignment problem for
an old policy:

1. Initialization: Set π(s) arbitrarily for all s ∈ S
2. Policy Evaluation: Compute estimates V (s) for state values
3. Policy Improvement: New policy chooses action that leads

to highest value of V
4. If policy is stable, stop; else goto 2 using new policy

The new policy is “stable” if it chooses the same actions as the
old one at every state.

Question: What complication am I glossing over here?

12

Policy Iteration

The Policy Improvement Theorem means that you can
construct a new policy by solving credit assignment problem for
an old policy:

1. Initialization: Set π(s) arbitrarily for all s ∈ S
2. Policy Evaluation: Compute estimates V (s) for state values
3. Policy Improvement: New policy chooses action that leads

to highest value of V
4. If policy is stable, stop; else goto 2 using new policy

The new policy is “stable” if it chooses the same actions as the
old one at every state.

Question: What complication am I glossing over here?

12

Self-Play

• Standard reinforcement learning is a single-agent problem
• “Expected reward from following a policy” is ill-defined,

because it depends on the other player’s policy
• Solution: self-play
• Each policy is part of “the environment” for the other
• Train policies simultaneously

13

Monte Carlo Advantages and Disadvantages

Advantages:
• Conceptually straightforward
• Very parallelizable (Why?)

• No dependence at all
between state estimates

Disadvantages:
• Estimates of one state’s value

are not used to improve
estimates of another
• Can only estimate the value of

states and actions that are
visited sufficiently often in
some trajectory
• =⇒ Slow, data-inefficient

V=??

V= 4

a

V=-2
b

V= 7

c

14

Monte Carlo Advantages and Disadvantages

Advantages:
• Conceptually straightforward
• Very parallelizable (Why?)

• No dependence at all
between state estimates

Disadvantages:
• Estimates of one state’s value

are not used to improve
estimates of another
• Can only estimate the value of

states and actions that are
visited sufficiently often in
some trajectory
• =⇒ Slow, data-inefficient

V=??

V= 4

a

V=-2
b

V= 7

c

14

Monte Carlo Advantages and Disadvantages

Advantages:
• Conceptually straightforward
• Very parallelizable (Why?)

• No dependence at all
between state estimates

Disadvantages:
• Estimates of one state’s value

are not used to improve
estimates of another
• Can only estimate the value of

states and actions that are
visited sufficiently often in
some trajectory
• =⇒ Slow, data-inefficient

V=??

V= 4

a

V=-2
b

V= 7

c

14

Temporal Difference (TD) Learning and TD(λ)

• Sutton (1988)
• Learn a model - a function from inputs to outputs
• Given only action sequences and rewards
• Learns a prediction (what is the best move?)
• Samples the environment (plays games)
• Compares learned estimate in each state with reward
• Learns from the difference
• Discount factor λ for future rewards
• The sooner after the current state the reward happens, the

higher the effect

15

MC vs. TD

MC learning

TD learning

16

TD High-level Ideas

• Usually, predictions from states closer to the end are more
reliable
• We can adjust earlier predictions, “trickle down”
• Bootstrapping - learn predictions from other predictions
• Whole process is grounded in the true final rewards
• This is one successful approach to solving the credit

assignment problem in practice

17

Function Approximation

• Tabular learning: Value of each state / state-action is
tracked separately
• Function approximation: Learn a model of values instead

• Based on features of the state / state-action
• Can use either Monte Carlo or TD updates

• Advantage: Generalization. The model can guess values
for similar states that it has never visited before.
• Disadvantage: Over-generalization. Different states can be

conflated if the features are insufficiently detailed.

18

Function Approximation

• Tabular learning: Value of each state / state-action is
tracked separately
• Function approximation: Learn a model of values instead

• Based on features of the state / state-action
• Can use either Monte Carlo or TD updates

• Advantage: Generalization. The model can guess values
for similar states that it has never visited before.

• Disadvantage: Over-generalization. Different states can be
conflated if the features are insufficiently detailed.

18

Function Approximation

• Tabular learning: Value of each state / state-action is
tracked separately
• Function approximation: Learn a model of values instead

• Based on features of the state / state-action
• Can use either Monte Carlo or TD updates

• Advantage: Generalization. The model can guess values
for similar states that it has never visited before.
• Disadvantage: Over-generalization. Different states can be

conflated if the features are insufficiently detailed.

18

Review - Backgammon

Image source: https://en.

wikipedia.org/wiki/Backgammon

• Racing game played with dice
• Players race in opposite

directions on the 24 points
• Single pieces can be captured

and have to start from the
beginning
• Doubling cube - play for double

stakes, or resign
• Gammon and backgammon -

win counts more if opponent is
far behind

19

https://en.wikipedia.org/wiki/Backgammon
https://en.wikipedia.org/wiki/Backgammon

Tesauro’s Neurogammon and TD-Gammon

• Neurogammon (Tesauro 1989)
• Plays backgammon using neural networks
• First program to reach “strong intermediate” human level,

close to expert
• Beat all (non-learning) opponents at 1989 Computer

Olympiad
• Beat many intermediate level humans,

lost to an expert player

20

Neurogammon Architecture

• Six separate networks, for different phases of the game
• Fully connected feed-forward nets
• One hidden layer
• Trained with backprop

• Supervised learning from 400 expert games
• One more network to make doubling cube decisions

• Trained on 3000 positions, hand-labeled

21

Limitations of Neurogammon

• Hand-engineered features are difficult to create
• Human experts cannot explain much of what they are

doing in a form that can be programmed
• Human expert games are difficult to collect, and are not

perfect

22

TD-Gammon

• TD-Gammon (Tesauro 1992, 1994, 1995)
• Training by self-play
• Learns from the outcome of games
• Uses Temporal Difference (TD) Learning

23

TD-Gammon Architecture

• 198 inputs - 8 per point, 6 extra information (pieces off the
board, toPlay)
• Single hidden layer, tried 10..80 hidden units
• Sigmoid activation function
• Output: one number, winning probability of input position
• Trained by TD(λ) with λ = 0.7, learning rate α = 0.1
• 200,000 training games, 2 weeks on high-end workstation
• Small (1-3-ply) Alphabeta search

24

TD-Gammon - Examples of Weights Learned

Image source: Tesauro, Practical Issues in Temporal Difference Learning, Machine Learning, 1992

25

TD-Gammon - Examples of Weights Learned

Image source: Tesauro, Practical Issues in Temporal

Difference Learning, Machine Learning, 1992

• Weights from input to two
of the 40 hidden units
• Both make sense to

human expert players
• Left: corresponds to who

is ahead in the race
• Right: probability that

attack will be successful

26

TD-Gammon Impact

• Much stronger than Neurogammon
• Close to top human players
• Changed opening theory
• Changed the way the game is played by human experts
• For many years, the most impressive application of RL

27

Computer Backgammon Now

• Programs generally follow the TD-Gammon architecture
• Bigger, faster, longer training
• Endgame databases with exact winning probabilities
• Considered almost perfect
• Much stronger than humans

28

Summary of RL Introduction

• Reinforcement learning for learning from self-play
• TD-Gammon as early success story
• Very small (for todays standard) net with 1 hidden layer
• World class performance
• Trained by RL, more specifically the TD(λ) algorithm

29

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search
	Machine Learning for Heuristic Search
	RL, AlphaGo and Beyond

