
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca


455 Today - Lecture 2

Topics:
• From Go0 to Go1: Recognizing eyes
• About Python 3 Go code
• Basic data structures and algorithms for Go Programs
• Algorithms for legal moves, capture, ko, eyes
• Some details on implementation of Go0 and Go1 programs
• Assignment 1 preview: GoMoku player

2



Coursework

New coursework:
• Read assignment 1
• Form teams - see under assignments
• Do Lecture 2 Activities

3



Organization of Go Code

• All Python code on course web page
• All Go programs in go directory
• Implementation of Go0 and Go1 in Python code files in go

• Utility functions shared by all Go programs
• Simple Go board
• Go0 and Go1 players

4



Board and GTP

• board_util.py
constants representing colors, conversion of moves, colors
from and to text, list of legal moves

• board.py
simple (and slow) implementation of a Go board, initialize
board, checking if move is legal, play move, liberties,
simple eye

• gtp_connection.py
GTP connection for a given Go playing engine and Go
board - receive and parse commands, call functions of the
engine or board to compute replies, format replies, handle
errors

5



Go0 and Go1 Players

• Go0 - file Go0.py
• Go0

player class, defines its name, version and get_move
function to generate a move

• run
Main function creates a board, a Go0 player and a GTP
connection

• Go1
• gtp_connection_go1.py

example for how to extend the GTP connection with an
extra player-specific command

• Go1.py
similar to Go0.py, but note use of GtpConnectionGo1
instead of GtpConnection

6



Implementing a Go Board and Go Rules

• Representing the board
• Updating the board after a move

• Recognize capture
• Checking for legal moves

• Recognize suicide and repetition (simple ko)

7



Why Bother with an Efficient Board
Representation?

• Most game programs are based on search and simulation
• Billions of moves played and taken back during a game
• Playing strength strongly depends on amount of search
• So, make it as fast as possible

• Our first Python codes are maybe 100,000 times slower
than state of the art

• Mostly, that is due to algorithms and data structures, not
Python...

• We start simple
• Later (Lecture 6) we will study more efficient ways

8



Representing State of a Point

• Three possible states: empty, black or white
• We could use the new-ish Python 3 enumeration type
https://docs.python.org/3/library/enum.html

class BoardColor(Enum):
EMPTY = 0
BLACK = 1
WHITE = 2

• In current program we just use integer codes for colors

EMPTY = 0
BLACK = 1
WHITE = 2

9

https://docs.python.org/3/library/enum.html


Representing the Go Board - 2d Array

• Most direct representation: 2-dimensional array (or Python
list)

• Store a point on the board at coordinates [x][y] in array
• Sample code fragment in: go2d.py

MAXSIZE = 7
board = [[EMPTY for x in range(MAXSIZE)]

for y in range(MAXSIZE)]
print(board)
board[3][4] = BLACK
print(board)

10



Drawbacks of Two-dimensional Array

• Overhead from 2D address calculation
• Need two variables (x, y) to represent a single point
• Often need two computations, for x and y separately
• Complex checking for boundary cases
if x >= 0 and y >= 0
and x < MAXSIZE and y < MAXSIZE

• if statements introduce conditional branches
and slow down execution

11



Go Board as One-dimensional Array

• Solution: use a simple 1-dimensional array
• From (x,y) to single index p = x + y * MAXSIZE
• Back from p to x and y by integer division and modulo

operators
• x = p % MAXSIZE
• y = p // MAXSIZE

Indices of board points for 7 × 7:

0 1 2 3 4 5 6 % points on first line
7 8 9 10 11 12 13 % second line

14 15 16 17 18 19 20 % third line
21 22 23 24 25 26 27 % ...
28 29 30 31 32 33 34
35 36 37 38 39 40 41
42 43 44 45 46 47 48

12



1D Array Pre-computations

• Can precompute many frequent calculations
• Lookup tables, e.g. x = xCoord[p]

• Frequent operations use simple offset, constant time
• Go to neighbors and diagonals
• Check if on border, or has neighbor
• Many more..

13



Drawbacks of Simple One-dimensional Array

• Edges of board still needs special case treatment
(lots of if statements)
0 1 2 3 4 5 6
7 8 9 10 11 12 13

• Index 6 and 7 are not neighbors...
• There is no neighbor upwards from 4...
• Similar for going down from bottom edge

14



Solution: Add Padding

Image source:

https://www.gnu.org/

software/gnugo/gnugo_15.html

• Solution: add extra “padding”
• Above board
• Below board
• Between rows

• Use new "off the board" code for
these points: BORDER = 3

Advantages:
• Neighbors in all 8 directions are

valid array indices
• No wraparound to next line
• Off-board recognized by checking
board[p] == BORDER

15

https://www.gnu.org/software/gnugo/gnugo_15.html
https://www.gnu.org/software/gnugo/gnugo_15.html


Branch Prediction

9/7/2021 PLSHOLQH,_4_VWaJH.VYJ

ÀOH:///UVHUV/MUZULJKW/DRZQORadV/PLSHOLQH,_4_VWaJH.VYJ 1/1

WaiWing
inVWUXcWionV

SWaJH 1: FHWcK

SWaJH 2: DHcRdH

SWaJH 3: E[HcXWH

SWaJH 4: WULWH-bacN

Pi
pe

lin
e

CompleWed
inVWUXcWionV

0 1 2 3 4 5 6 7 �
Clock c\cle

Image source:

https://en.wikipedia.org/

wiki/Branch_predictor

• Modern processors use a
pipelining architecture

• Earlier phases of later instructions
are executed simultaneously with
later phases of earlier instructions

• When a conditional branch is
encountered, processor guesses
whether it will be taken

• When it guesses wrong, all of the
progress on later instructions has
to be thrown away

16

https://en.wikipedia.org/wiki/Branch_predictor
https://en.wikipedia.org/wiki/Branch_predictor


Branch Prediction Example

def _get_liberty(self, block):
for s in where1d(block):

lib = self.find_neighbor_of_color(s, EMPTY)
if lib != None:

return lib
return None

def find_neighbor_of_color(self, point, color):
for nb in self.neighbors[point]:

if self.get_color(nb) == color:
return nb

return None

17



Comments for Board Representation

• Standard in Go: 1D board with extra padding
• Other special purpose representations are possible:

• Bitsets, one set per color
• List of stones
• Cover board with small patterns, e.g. 3 × 3 squares

• Will use this as “simple features” later

• Optional resource to learn more: https://www.
chessprogramming.org/Board_Representation
detailed discussions for chess

• Next: Playing and Undoing Go moves

18

https://www.chessprogramming.org/Board_Representation
https://www.chessprogramming.org/Board_Representation


Playing and Undoing Moves

• play_move(p, color)
Put stone of given color on point p

• Simplest case: just need
board[p] = color

• Major complication:
recognize captures and remove
captured stones

• Closely related to play_move:
check if move on p is legal, before
playing it...

19



Capturing Stones

• Which opponent stones are
captured?

• Black move A captures one stone
• Black move B does not capture

anything...
• To check if B is a capture:

Must check neighbors of the whole
block for liberties

• Must find the liberty at C to decide
that B is not a capture

20



Update Board After a Capture

• For this simple data structure it is easy
• Just change the color of the points

for stone in capturedBy(p, color):
board[stone] = EMPTY

• More efficient data structures keep more information, need
more updates

21



Capturing Stones Algorithm

• Which opponent stones are captured?
• Look at all neighbors nb of p which are

stones of opponent
• Check if block of nb loses its last liberty
• Similar to floodfill in graphics, or

depth-first search in graph
• Look at all stones connected to nb

• If any stone has a liberty (other than p),
stop: no capture

• If no stone in the block has another
liberty, then all are captured

22



Floodfill Algorithms

• Go board can be viewed as a graph
• Node = intersection of lines on board
• Edge = line segment connecting two neighboring

intersections
• How to find connected components in a graph?
• Floodfill algorithms, based on graph search

Example:
https://en.wikipedia.org/wiki/Flood_fill

23

https://en.wikipedia.org/wiki/Flood_fill


Floodfill Algorithms

Basic ideas
• Keep track of points already visited (e.g. mark them)
• Visit all neighbors
• If they are the right color, then recursively visit their

neighbors
• Depth-first search (DFS)
• Different ways to implement

• Explicit recursion, e.g.
• Store points to be processed in a stack

• Resources page has some references for your review

24



Floodfill Application in Go - Blocks of Stones

• Find blocks = connected set of stones
• See code in simple_board.py

• Find a block, then check if it has any liberties or should be
removed (captured)

• Function _block_of implements basic stack-based dfs
• Function _has_liberty checks neighbors of block to find

liberty
• Question (Activity 2e): is this efficient? Can you think of a

faster way?

25



Implementing Go Rules

• I explained Go rules informally in Lecture 1
• For programming we need a more formal version
• Popular example of minimalistic ruleset:

Tromp-Taylor rules (next slide)
• Main question in practice:

check if move is legal

26



Tromp-Taylor Rules

From http://tromp.github.io/go.html

1. Go is played on a 19x19 square grid of points, by two
players called Black and White.

2. Each point on the grid may be colored black, white or
empty.

3. A point P, not colored C, is said to reach C, if there is a
path of (vertically or horizontally) adjacent points of P’s
color from P to a point of color C.

4. Clearing a color is the process of emptying all points of
that color that don’t reach empty.

5. Starting with an empty grid, the players alternate turns,
starting with Black.

6. A turn is either a pass; or a move that doesn’t repeat an
earlier grid coloring.

27

http://tromp.github.io/go.html


Tromp-Taylor Rules Continued

8. A move consists of coloring an empty point one’s own
color; then clearing the opponent color, and then clearing
one’s own color.

9. The game ends after two consecutive passes.
10. A player’s score is the number of points of her color, plus

the number of empty points that reach only her color.
11. The player with the higher score at the end of the game is

the winner. Equal scores result in a tie.
Comments:

• Compare the “reach” definition in point 3 with floodfill.
• These rules allow suicide (why?). It is a bit more complex

to write formal rules that forbid it.

28



Checking If Move is Legal

Check three conditions:
isLegal(p, color):

1. board[p] == EMPTY

2. not isSuicide(p, color)

3. not repetition(p, color)

Remark: in our program, we call play_move on a copy of the
board. It makes the same checks and returns a boolean.

29



Checking Suicide

• Very similar to checking
capture for the other
color

• Main difference: the
move can connect
several blocks, and none
of them may have
another liberty

• See examples: Black A
is suicide, Black B is not
because liberty at C

30



Checking Suicide in Go0

In function play_move:

block = self._block_of(point)
if not self._has_liberty(block): # undo suicide move

self.board[point] = EMPTY
return False

31



Checking Repetition

• Repeating same board position is illegal
• Naive check is very expensive:

• Keep record of all previous positions
• Compare with current position point for point

• Can be done much faster (Lecture 6)
• Think about how you would optimize it
• go code checks only the most frequent case:

simple ko (next slide)

32



Checking Simple Ko Repetition

• After capture of a single stone s:
• set ko_recapture = s

• After any other move:
set ko_recapture = None

• If p == ko_recapture
and
“p would capture a single stone”:

• Then p is illegal
• Details in function play_move near

the end

33



Undo, Taking Back Moves

• For search, need to consider many alternative moves
• Need undo: take back move before trying another
• Main problem: deal with captured stones
• How to implement undo?
• Two basic approaches

• Copy-and-modify
• Incremental with change stack

• Note: Go0 and Go1 do NOT implement undo

34



Undo With Copy-and-modify

• For each move:
• copy the board
• modify the copy
• make the copy the new board

• Keep a stack of all boards, one per position
• To undo a move, simply pop the top board from stack, use

the previous one
• Pro: simple to implement, simple data copies are fast on

modern hardware
• Con: uses much memory, lots of copying state

35



Change Stack

• Single Go board, plus a stack
• At start of each move, push a special marker onto stack
• Record each change: store old value on stack
• Example:

• board[43] was BLACK before capture
• push (43, BLACK) onto stack
• Then change the board, e.g. board[43] = EMPTY

36



Incremental Undo with Change Stack

• To undo a move:
• Restore old values recorded on stack
• Stop when reaching the special marker
• Example:

• pop() returns (43, BLACK)
• Restore old board state, board[43] = BLACK

• Pro: no copying, minimal number of operations
• Con: more work to implement correctly

37



Summary and Outlook

• Discussed most of the basics of implementing Go
• Go board data structure, padded 1D array
• Checking legal moves, playing and undo
• Next time: start discussing human decision-making

38



Assignment 1 Preview

• Task
• implement a random player for the Gomoku (Five in a Row)

game based on our Go0 code
• Goals:

• Understand the code base of the Go0 and Go1 players
• Modify it to implement a different game
• Become familiar with Python coding

39



Go0 and Go1 Program Review

• Download program code - part of Activities
• Written in Python 3
• Used to demonstrate basic data structures and algorithms

in Go
• Also used as starting point for Assignment 1
• Go0 plays completely random legal moves
• Go1 does not fill simple eyes (see last class)

40



Assignment 1 Starter Code

• Download assignment1.tgz from assignment page
• Contains copy of go directory, for you to modify
• Contains public tests for the assignment

41



Gomoku or Five in a Rowgomoku1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

1

2 3 4

5 6

7

8

9

10

11 12

1314

15

16

17

18

19

• Place a stone of your
color, as in Go

• First to make 5 or more
in a row wins

• Example: Black just won
• Board full, no 5 in a row:

draw
• Differences to Go

• Completely different
win condition

• No capturing, suicide,
ko

42



Assignment 1: Random Gomoku Player

gomoku1

A

A

B

B

C

C

D

D

E

E

F

F

G

G

H

H

J

J

K

K

L

L

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

1

2 3 4

5 6

7

8

9

10

11 12

1314

15

16

17

18

19

Your computer player should:
• Place a stone of your color on a

random empty point
• Recognize the end of the game:

• One side made 5 or more in a row
• The board is full, nobody won

• Start from Go0 sample code
• Implement some GTP commands

related to Gomoku rules
• Details in the Assignment 1 specs

43



Quiz 0 Background Knowledge Survey

• 74 Attempts
• Participation Marks: 74 yes. 100%

44



Courses Completed or Taking

Course Completed Taking

Any Statistics course 89% 23%
Cmput 201 Practical Programming Methodology 95% 3%
Cmput 204 Algorithms I 89% 5%
Cmput 250 Computers and Games 8% 1%
Cmput 272 Formal systems and Logic... 97% 3%
Cmput 325 Nonprocedural programming languages 5% 0%
Cmput 350 Advanced Game Programming 4% 1%
Cmput 355 or 396 Games Puzzles Algorithms 30% 5%
Cmput 366 Intelligent Systems 53% 4%
Cmput 466 Introduction to Machine Learning 3% 18%

45



Current Knowledge, Part 1

Topic ++ + = ? ??

Depth-first search 32% 47% 15% 4% 1%
Best-first search w/heuristics 15% 36% 30% 12% 7%
Dijkstra 18% 39% 18% 12% 14%
A* 12% 45% 24% 8% 11%
Linked lists 31% 39% 23% 5% 1%
2D arrays 58% 27% 9% 5% 0%
Trees 16% 57% 27% 0% 0%
Graphs 15% 38% 36% 9% 1%
Hashing 14% 39% 45% 1% 1%
DAGs 11% 31% 23% 18% 18%

46



Current Knowledge, Part 2

Topic ++ + = ? ??

Go 8% 32% 31% 22% 7%
Neural networks 5% 41% 32% 16% 5%
Deep learning 3% 34% 30% 27% 7%
Programming in Python 59% 36% 4% 0% 0%
OOP (any language) 47% 35% 14% 4% 0%
OOP (Python) 34% 45% 18% 3% 1%
C/C++/C#/Java/similar 31% 47% 20% 1% 0%
Linux/Unix 30% 34% 30% 5% 1%
Bandit algs 4% 18% 12% 15% 51%
Monte Carlo Tree Search 7% 20% 26% 30% 18%
Pattern matching 0% 11% 24% 26% 39%

47



Quiz 1 Game of Go

• 74 Attempts
• Average score 91%
• Toughest question: Q7, 79%
• Review this question now
• Other questions - please use office hours or eClass forum

to clarify

48



Quiz 1 Game of Go - Review Question 7

Q7 “The goal of the game is to capture as many stones as
possible”

• No, goal is to get more points
than opponent. Surrounded
empty points are also part of
your score.

• See example - Black captured 3
stones, White captured none

• White has many more points
and wins.

49


	Intro - Problem Solving for Humans and Computers

