
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca

455 Today - Lecture 19

• Using learned models in UCT
• Introduction to Neural Networks (NN)
• Examples
• Learning with NN - Backprop
• Types of (artificial) neural networks
• NN as universal function approximators

2

Coursework

• Assignment 3: late submission deadline was last night
• Grades available by the end of the weekend

• Lecture 19 activities:
• Videos and demos for neural nets

• Quiz 10: Machine learning with simple features
(Double-header)

3

Recap

• Learning with simple features
• Coulom’s approach:

• Generalized Bradley-Terry model for strength of moves
• MM algorithm for learning weights

4

Using Knowledge in UCT

• Regular UCT: select best child by UCT formula
• UCT value of move i from parent p:

UCT (i) = µ̂i + C

√
log np

ni

• This uses only information from simulations
• Empirical winrate µ̂i , number of simulations ni , number of

simulations for parent np

• We can improve move selection by using
learned knowledge
• Examples: simple features, neural networks

• Idea: give good moves a bonus before simulations start

5

How to Use Knowledge

Three ways:
1. Initialization of node statistics
2. Additive knowledge term
3. Multiplicative knowledge term

6

Decay Knowledge over Time

• At the beginning, we have only few simulations
• Win rate µ̂i is very noisy
• Knowledge may be more reliable, can help to guide search

• Later, we may have many simulations for a node
• We should trust them more now
• All knowledge is heuristic, may be wrong
• Slowly phase out knowledge as more simulations

accumulate

7

1. Initialization of Node Statistics

• Normal UCT: count number of simulations and wins
• Initialize to 0

• For all children i
• Wins wi = 0
• Simulations ni = 0

• We can initialize with other values to encode knowledge
about moves
• Give good moves some imaginary initial “wins”
• Give bad moves some imaginary initial “losses”

8

1. Initialization of Node Statistics (2)

• How to initialize ni and wi ?
• Size of ni expresses how reliable the knowledge is
• Winrate wi/ni expresses how good or bad the move is,

according to the knowledge
• Original work by Gelly and Silver (2007): knowledge worth

up to 50 simulations
• Fuego program: simple feature knowledge converted into

winrate/simulations
• Decay over time: yes

• Over time, real simulation statistics dominate over
initialization

9

2. Additive Knowledge

• Idea: add a term to UCT formula

UCT (i) = µ̂i + knowledgeValue(i) + C

√
log np

ni

• knowledgeValue(i) computed e.g. from simple
features or neural network
• Must scale it relative to other terms by tuning

• Too small: little influence on search
• Too big: too greedy, ignores winrate

• Decay over time: must be explicitly programmed
• Multiply knowledge term by some decay factor

• Examples: 1/(ni + 1),
√

1/(ni + 1),...

10

3. Multiplicative Knowledge, Probabilistic UCT
(PUCT)

• Idea: explore promising moves more
• Knowledge used:

• Probability pi that move i is best
• Multiply exploration term by pi

PUCT (i) = µ̂i + pi × C

√
log np

ni

• Decay over time: yes
• Divide by ni in the exploration term

• Exploration term smaller than before, because pi ≤ 1
• May need to balance by increasing C

• AlphaGo: exploration term pi × C/(ni + 1)

11

Summary of Knowledge in UCT

• Knowledge can be used in an in-tree selection formula
• Independent from using knowledge during the simulation

phase
• Can be (much) slower, used only in tree nodes, not in each

simulation step
• Different approaches have been tried successfully

1. Initialization of node statistics by knowledge
2. Additive term
3. Multiplicative term, PUCT

12

Outline

• Introduction to Neural Networks (NN)
• Artificial neural networks in computing science
• Neural networks as function approximators
• Learning weights for NN - Backpropagation

13

Neural Networks

• A neural network in Computing Science is a function

y = f (x ;w)

• It takes input (x) and produces outputs (y)
• It has many parameters (weights w) which are determined

by learning (training)
• Deep neural networks can approximate (almost) any

function in practice
• Training NN:

• Supervised learning
• Reinforcement learning

14

Neural networks in Biology - Neurons

Image source:

http://www.frontiersin.org/

files/Articles/62984/

fncel-07-00174-r2/

• Neuron = nerve cell
• Found in:

• Central nervous system
(brain and spinal cord)

• Peripheral nervous system
(nerves connecting to limbs
and organs)

• Involved in all sensing,
movement, and information
processing (thinking, reflexes)
• Very complex systems, function

is still only partially understood

15

http://www.frontiersin.org/files/Articles/62984/fncel-07-00174-r2/
http://www.frontiersin.org/files/Articles/62984/fncel-07-00174-r2/
http://www.frontiersin.org/files/Articles/62984/fncel-07-00174-r2/

Neural Networks (NN) in Computing Science

• Massively simplified, abstract model
• Used as a powerful function approximator for (almost)

arbitrary functions
• We now have effective learning algorithms

even for very large and deep networks
• Single (artificial) neuron:

implements a simple mathematical function
from its inputs to its output
• Connections between neurons:

• Each connection has a weight
• Expresses the strength of the connection

16

Binary Classification Example

• Consider the binary
classification problem
• We want to draw a line between

the classes
• For a problem with two features,

the equation becomes
z = sgn (w1x1 + w2x2 + b)
• x1, x2 are the input features
• z is the output (class value)
• sgn is the sign operator
• w1,w2 are the feature weights
• b is the bias term

• Find w1,w2 and b such that the
line can separate the classes
clearly

17

The Perceptron: A Single Neuron

• Inputs x1...xm (from m neurons on previous layer)
• Extra constant input x0 = 1
• Each input xi has a weight wi

• Weighted sum of inputs
∑m

i=0 wixi

• Nonlinear activation function (or transfer function) φ
• Output y = φ(

∑m
i=0 wixi)

• Output used as input for neurons on next layer

Image source: https://www.codeproject.com/KB/AI/NeuralNetwork_1/nn2.png

18

https://www.codeproject.com/KB/AI/NeuralNetwork_1/nn2.png

Components of a NN -
Input, Output and Hidden Layers

Image source: https://en.wikipedia.

org/wiki/Artificial_neural_network

• Organized in layers of
neurons
• Each layer is connected to

the next
• Input layer
• One or more hidden layers
• Output layer
• Shallow vs Deep NN

Main difference:
Number of hidden layers

19

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network

Supervised Training of a Network - Overview

• View the whole network as a function y = f (x)
• Both x and y are vectors of numbers
• Train by supervised learning from set of data (xj , yj)

• Compute errors - differences between yj and f (xj)

• Compute how error depends on each weight wi in network
• Gradient descent - adjust weights wi in network to reduce

these errors
• Example now, details later

20

Software: NN Toy Examples in Python

• First example: nn.py in python/code

• Adapted from article at http://iamtrask.github.io/
2015/07/12/basic-python-network

• 1 input layer, 1 hidden layer, 1 output node
• 3 input nodes - Each input xi consists of three values
• Training data: 4 examples
• Input: 4 rows, 1 for each xi , i = 0,1,2,3
• Sigmoid activation function (see next slide)
• Output vector with 4 numbers yi

21

http://iamtrask.github.io/2015/07/12/basic-python-network
http://iamtrask.github.io/2015/07/12/basic-python-network

Sigmoid Function

Image source: https://qph.ec.quoracdn.net

• Nonlinear function, popular for activation function
• Smoothly grows from 0 to 1
• Definition:

σ(x) =
1

1 + e−x

22

https://qph.ec.quoracdn.net

Properties of Sigmoid Function

Image source: https://qph.ec.quoracdn.net

• x large negative number:
e−x very large, σ(x) close to 0
• x large positive number:

e−x very small, σ(x) close to 1
• x = 0: σ(x) = 1/2
• Nice property of σ(x): derivative

dσ(x)
dx

= σ(x)(1− σ(x))

23

https://qph.ec.quoracdn.net

Backpropagation and Training - Error

• Same basic ideas as learning with simple features
• Let f be the function computed by the net
• Result of f depends on

• input vector x
• all weights wj

• Output y = f (x ,w0, ...wn)
• Error on data point (xi , yi):

• Difference between f (xi) and yi
• Usual measure - squared error (yi − f (xi))

2

• Goal: minimize sum of square errors over training data
• Error E =

∑
i(yi − f (xi))

2

24

Backpropagation Concepts

• How to reduce error?
• The only thing we can change are the weights wi

• How does error E depend on all the weights?
• Simpler question: how does error E depend on a single

weight wi?
• Should we increase wi , decrease it, or leave it the same?
• The partial derivative of E with respect to wi gives the

answer

∂E
∂wi

25

Partial Derivative - Intuition

• Meaning of ∂E
∂wi

• Make a small change of wi

• How does it affect the error E?
• Which change will reduce the

error?
• Look at sign of derivative

• ∂E
∂wi

> 0 - Small decrease in wi will decrease E

• ∂E
∂wi

= 0 - Small change in wi will have no effect on E

• ∂E
∂wi

< 0 - Small increase in wi will decrease E

26

Partial Derivative and Rate of Change

• Error E is a function of
all inputs x , all outputs y and all weights w
• Partial derivative quantifies the effect of

leaving everything else constant
and making a small change ε to wi

• E(· · · ,wi + ε, · · ·) ≈ E(· · · ,wi , · · ·) + ∂E
∂wi

ε

27

Derivative and Chain Rule

• How does the error E change if we change any single
weight in the net?
• We can break down the computation layer by layer
• The error function is a simple function of the output
• The output is the result from the last layer in the net
• Each node implements a simple function of its inputs
• The inputs are again simple functions of the previous layer,

etc.
• We can break down the computation of ∂E

∂wi
into a

neuron-by-neuron computation using the chain rule

28

Chain Rule

• z = f (x), y = g(z) = g(f (x))
• Then

∂y
∂x

=
∂y
∂z
× ∂z
∂x

• Example:
• Neuron input

z =
∑m

i=0 wixi

• Sigmoid activation function
y = σ(z) = σ(

∑m
i=0 wixi)

• How does output y depend on some weight, say w1?

29

Chain Rule Example Continued

• Example - compute derivative of y with respect to w1, ∂y
∂w1

• By chain rule, ∂y
∂w1

= ∂y
∂z ×

∂z
∂w1

• First, derivative of z with respect to w1, ∂z
∂w1

• z is just a linear function of w1
• z = w1x1+ (terms that do not depend on w1)
• ∂z

∂w1
= x1

• Now, ∂y
∂z = ∂σ(z)

∂z

• Remember dσ(x)
dx = σ(x)(1− σ(x))

• So ∂y
∂z = σ(z)(1− σ(z))

• Result: ∂y
∂w1

= σ(z)(1− σ(z))× x1 = y(1− y)x1

• Final result is simple, easy to compute
• In practice, packages such as PyTorch, TensorFlow, etc.

can do all of the math automatically

30

Backpropagation (Backprop) Step

• Apply chain rule to compute how changes to weights
reduce error
• Go some distance ε along the gradient of E with respect to

weights
• wi = wi − ε ∂E

∂wi
• Choice of step size ε is important
• Go too far - overshoot the minimum
• Go too little - very slow improvement of E

31

Backprop Algorithms

• Developed starting in the 1960’s
• Main ideas
• Define step size ε
• Compute backprop step for all weights
• Repeat until error on test set does not improve
• Huge number of variations of backprop algorithms

• Momentum, adaptive step size, stochastic vs batch data, ...

32

Network Types

• Feed-forward NN (all our examples)
• Information flows in one direction from input to output

• Recurrent NN (RNN)
• Directed cycles in the network
• Popular in natural language processing, speech and

handwriting recognition
• Example of very successful deep RNN architecture: LSTM,

“Long short-term memory”
• Can be trained by backprop, like our feed-forward nets

• Autoencoder - learn representation for data with
unsupervised learning
• Hundreds of other NN types, new ones each month

33

Building a Neural Network

Important Questions:
• How many layers?
• How to connect the layers
• How many neurons in each layer?
• What kind of functions can we represent in principle?
• What kind of functions can we learn efficiently?

34

Neural Networks as Universal Approximators

• NN with at least one hidden layer can approximate any
continuous function arbitrarily well, given enough neurons
in the hidden layer
• Given a continuous function f (x)
• Consider f (x) in the range 0 ≤ x ≤ 1
• Given an arbitrarily small ε > 0
• Theorem (Cybenko 1989)

There exists a 1-hidden-layer NN g(x) such that

|f (x)− g(x)| < ε for all 0 ≤ x ≤ 1

35

NN as Universal Approximators (2)

• How is that possible?
• Intuitively, it works by:

• Having lots of neurons in the hidden layer
• Two neurons together can approximate a step function
• Their sum is very close to f (x) in a tiny interval
• Their sum is almost 0 everywhere else

• Demo from
http://neuralnetworksanddeeplearning.com/
chap4.html

• Note: constant b in demo is what we called w0

36

http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html

NN as Universal Approximators (3)

Comments:
• The theorem does not mean that any network can

approximate any function arbitrarily well
• The theorem says that by adding more and more hidden

neurons, we can make the error smaller and smaller
• The theorem is only about continuous function. But we can

also approximate functions with discontinuous jumps pretty
well

37

NN as Universal Approximators (4)

More comments:
• Why are we using multilayer “deep” networks if 1 hidden

layer is enough in theory?
• Short answers:

• Efficiency of learning
• Size of representation

• Details: http://neuralnetworksanddeeplearning.
com/chap5.html

38

http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap5.html

Network Architecture - fully connected

• Review - usually, connections are only
from one layer to the next
• Some recent success with adding connections to layers

“further up” (not discussed here)
• Simplest architecture: fully connected

• Each neuron on layer n
connected to each neuron on layer n + 1

Image source: http://neuralnetworksanddeeplearning.com/chap6.html

39

http://neuralnetworksanddeeplearning.com/chap6.html

Sparse Network Architectures

Image source: https://www.slideshare.

net/SeongwonHwang/presentations

• Opposite of fully connected:
sparse
• Neuron connected to only

some neurons on next layer
• Important case for us:

Convolutional NN (next
lecture)

40

https://www.slideshare.net/SeongwonHwang/presentations
https://www.slideshare.net/SeongwonHwang/presentations

Summary

• Introduced neural networks
• Backprop algorithm
• Examples of networks
• Next time: convolutional networks, deep networks
• Move prediction in Go with deep convolutional networks

41

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search
	Machine Learning for Heuristic Search

