Computing Science (CMPUT) 455

Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta
james.wrightQualberta.ca

Fall 2021

james.wright@ualberta.ca

455 Today - Lecture 19

¢ Using learned models in UCT
Introduction to Neural Networks (NN)

e Examples

Learning with NN - Backprop

Types of (artificial) neural networks

NN as universal function approximators

Coursework

¢ Assignment 3: late submission deadline was last night
® Grades available by the end of the weekend
e |ecture 19 activities:
* Videos and demos for neural nets
¢ Quiz 10: Machine learning with simple features
(Double-header)

Recap

® |earning with simple features
e Coulom’s approach:

® Generalized Bradley-Terry model for strength of moves
* MM algorithm for learning weights

Using Knowledge in UCT

Regular UCT: select best child by UCT formula
UCT value of move i from parent p:

|
UCT(i) = pii + Cy| 28

i

This uses only information from simulations
® Empirical winrate fi;, number of simulations n;, number of
simulations for parent n,
¢ We can improve move selection by using
learned knowledge
® Examples: simple features, neural networks

Idea: give good moves a bonus before simulations start

How to Use Knowledge

Three ways:
1. Initialization of node statistics
2. Additive knowledge term
3. Multiplicative knowledge term

Decay Knowledge over Time

¢ At the beginning, we have only few simulations

* Win rate ji; is very noisy

* Knowledge may be more reliable, can help to guide search
e Later, we may have many simulations for a node

* We should trust them more now

¢ All knowledge is heuristic, may be wrong

* Slowly phase out knowledge as more simulations
accumulate

1. Initialization of Node Statistics

e Normal UCT: count number of simulations and wins
e |nitialize to 0
e For all children i
* Winsw; =0
e Simulations n; =0
e We can initialize with other values to encode knowledge
about moves
® Give good moves some imaginary initial “wins”
® Give bad moves some imaginary initial “losses”

1. Initialization of Node Statistics (2)

e How to initialize n; and w; ?

e Size of n; expresses how reliable the knowledge is

e Winrate w;/n; expresses how good or bad the move is,
according to the knowledge

¢ Original work by Gelly and Silver (2007): knowledge worth
up to 50 simulations

® Fuego program: simple feature knowledge converted into
winrate/simulations

e Decay over time: yes

® Qver time, real simulation statistics dominate over
initialization

2. Additive Knowledge

Idea: add a term to UCT formula

log log np

UCT (i) = ji; + knowledgeValue(i) + C S
1

knowledgeValue (1) computed e.g. from simple
features or neural network
Must scale it relative to other terms by tuning

® Too small: little influence on search

* Too big: too greedy, ignores winrate
Decay over time: must be explicitly programmed
Multiply knowledge term by some decay factor

e Examples: 1/(nj+ 1), v/1/(ni +1),...

3. Multiplicative Knowledge, Probabilistic UCT
(PUCT)

Idea: explore promising moves more
Knowledge used:
® Probability p; that move i is best

Multiply exploration term by p;

|
PUCT (i) = pii + pi % Cy /%ﬁ"
]

e Decay over time: yes
® Divide by n; in the exploration term

Exploration term smaller than before, because p; < 1
* May need to balance by increasing C

AlphaGo: exploration term p; x C/(n; + 1)

Summary of Knowledge in UCT

Knowledge can be used in an in-tree selection formula

Independent from using knowledge during the simulation
phase

Can be (much) slower, used only in tree nodes, not in each
simulation step

Different approaches have been tried successfully

1. Initialization of node statistics by knowledge
2. Additive term
3. Multiplicative term, PUCT

Outline

Introduction to Neural Networks (NN)

Artificial neural networks in computing science
Neural networks as function approximators
Learning weights for NN - Backpropagation

Neural Networks

A neural network in Computing Science is a function

y =f(x;w)

It takes input (x) and produces outputs (y)
It has many parameters (weights w) which are determined
by learning (training)
e Deep neural networks can approximate (almost) any
function in practice
Training NN:

® Supervised learning

® Reinforcement learning

Neural networks in Biology - Neurons

Image source:
http://www.frontiersin.org/
files/Articles/62984/

fncel-07-00174-r2/

Neuron = nerve cell
Found in:
® Central nervous system
(brain and spinal cord)
® Peripheral nervous system
(nerves connecting to limbs
and organs)
Involved in all sensing,
movement, and information
processing (thinking, reflexes)

Very complex systems, function
is still only partially understood

http://www.frontiersin.org/files/Articles/62984/fncel-07-00174-r2/
http://www.frontiersin.org/files/Articles/62984/fncel-07-00174-r2/
http://www.frontiersin.org/files/Articles/62984/fncel-07-00174-r2/

Neural Networks (NN) in Computing Science

e Massively simplified, abstract model

e Used as a powerful function approximator for (almost)
arbitrary functions

¢ We now have effective learning algorithms
even for very large and deep networks

¢ Single (artificial) neuron:
implements a simple mathematical function
from its inputs to its output

e Connections between neurons:

® Each connection has a weight
® Expresses the strength of the connection

Binary Classification Example

e Consider the binary
classification problem

e We want to draw a line between
the classes
¢ For a problem with two features,
the equation becomes
Z =sgn (WiXq + WoXo + b)
® Xxq, Xo are the input features
® Zis the output (class value)
® sgn is the sign operator
* w;, ws are the feature weights
® bpis the bias term

e Find wy, wo and b such that the

line can separate the classes
clearly

Petal width

Binary Iris Class Labels

.

.

..
Lt

°
wo oo o

Petallength

The Perceptron: A Single Neuron

¢ Inputs xq...xn (from m neurons on previous layer)

e Extra constant input xp = 1

Each input x; has a weight w;

Weighted sum of inputs "7, w;x;

Nonlinear activation function (or transfer function) ¢
Output y = ¢(>-14 wix))

Output used as input for neurons on next layer

Image source: https://www.codeproject .com/KB/AI/NeuralNetwork_1/nn2.png

https://www.codeproject.com/KB/AI/NeuralNetwork_1/nn2.png

Components of a NN -

Input, Output and Hidden Layers

Hidden

' ™

f |
| |

Input

Image source: https://en.wikipedia.

org/wiki/Artificial_neural_network

e Organized in layers of
neurons

e Each layer is connected to
the next

® |nput layer
e One or more hidden layers
e Qutput layer

e Shallow vs Deep NN
Main difference:
Number of hidden layers

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network

Supervised Training of a Network - Overview

¢ View the whole network as a function y = f(x)

e Both x and y are vectors of numbers

e Train by supervised learning from set of data (x;, y;)

e Compute errors - differences between y; and f(x;)

e Compute how error depends on each weight w; in network

e Gradient descent - adjust weights w; in network to reduce
these errors

e Example now, details later

20

Software: NN Toy Examples in Python

First example: nn.py in python/code

Adapted from article at http://iamtrask.github.io/
2015/07/12/basic-python-network

1 input layer, 1 hidden layer, 1 output node

3 input nodes - Each input x; consists of three values
Training data: 4 examples

Input: 4 rows, 1 foreach x;, i =0,1,2,3

Sigmoid activation function (see next slide)

Output vector with 4 numbers y;

21

http://iamtrask.github.io/2015/07/12/basic-python-network
http://iamtrask.github.io/2015/07/12/basic-python-network

Sigmoid Function

Image source: https://gph.ec.quoracdn.net
¢ Nonlinear function, popular for activation function
e Smoothly grows from 0 to 1
¢ Definition:

22

https://qph.ec.quoracdn.net

Properties of Sigmoid Function

1

0.9
0.8
07
0.6
0.5
0.4
0.3
0.2
0.1

0
-10

Image source: https://gph.ec.quoracdn.net
® x large negative number:
e ¥ very large, o(x) close to 0
® x large positive number:
e * very small, o(x) close to 1
e x=0:0(x)=1/2
¢ Nice property of o(x): derivative

do(x)

=o(x)(1 - a(x))

https://qph.ec.quoracdn.net

Backpropagation and Training - Error

Same basic ideas as learning with simple features
Let f be the function computed by the net

Result of f depends on

® input vector x
* all weights w;

Output y = f(x, wp, ...Wp)
Error on data point (x;, y;):

¢ Difference between f(x;) and y;
* Usual measure - squared error (y; — f(x;))?

Goal: minimize sum of square errors over training data
Error E =Y ,(yi — f(x))?

24

Backpropagation Concepts

e How to reduce error?

e The only thing we can change are the weights w;

* How does error E depend on all the weights?

e Simpler question: how does error E depend on a single
weight w;?

e Should we increase w;, decrease it, or leave it the same?

e The partial derivative of E with respect to w; gives the
answer

oE
0 Wi

25

Partial Derivative - Intuition

« " ... Learning Rate, a constant or function to determine the size
of stride per iteration.

oF

Weight

* Meaning of 5
* Make a small change of w;
¢ How does it affect the error E?

Which change will reduce the
error?

e Look at sign of derivative

e £ > 0- Small decrease in w; will decrease £

° a—Ei = 0 - Small change in w; will have no effect on E

° a—El < 0 - Small increase in w; will decrease E

26

Partial Derivative and Rate of Change

te, a constant or function to determine the size

yyyyy

e Error E is a function of
all inputs x, all outputs y and all weights w
¢ Partial derivative quantifies the effect of
leaving everything else constant
and making a small change ¢ to w;

° E(”"W"—{_E"”)%E(”"W""”)+67W,'6

27

Derivative and Chain Rule

¢ How does the error E change if we change any single
weight in the net?

e We can break down the computation layer by layer

e The error function is a simple function of the output
* The output is the result from the last layer in the net
e Each node implements a simple function of its inputs

¢ The inputs are again simple functions of the previous layer,
etc.

e We can break down the computation of 3871:;/ into a
neuron-by-neuron computation using the chain rule

28

Chain Rule

* z=1(x),y =9(2) = 9(f(x))

e Then
dy oy oz

ox 0z " ox

Example:

e Neuron input

z =3[0 WiX;

Sigmoid activation function

y =0(2) = a(Xo wix;)

How does output y depend on some weight, say w;?

29

Chain Rule Example Continued

e Example - compute derivative of y with respect to wjy, oy

owy

0z
owq W

e First, derivative of z with respect to wy,

® zisjust a linear function of w;

® 7z = wyx;+ (terms that do not depend on wy)
1

° NOW’ 82 - 8?9(22)

e Remember 22 — 5(x)(1 — o(x))

° S0 = J(Z)(1 —0(2))

* Result: 52 = o(2)(1 - o(2)) x X1 = y(1 = y)xq
¢ Final result is simple, easy to compute

¢ |n practice, packages such as PyTorch, TensorFlow, etc.
can do all of the math automatically

* By chain rule, 52 = % x

8W

30

Backpropagation (Backprop) Step

« “¢” ... Learning Rate, a constant or function to determine the size
of stride per iteration.

oF

Weight

® Apply chain rule to compute how changes to weights
reduce error

e Go some distance ¢ along the gradient of E with respect to
weights
OE

e W= Ww;,— €ow;
¢ Choice of step size e is important

¢ Go too far - overshoot the minimum

¢ Go too little - very slow improvement of E

31

Backprop Algorithms

Developed starting in the 1960’s

Main ideas

Define step size ¢
Compute backprop step for all weights

Repeat until error on test set does not improve
Huge number of variations of backprop algorithms

* Momentum, adaptive step size, stochastic vs batch data, ...

32

Network Types

Feed-forward NN (all our examples)
¢ Information flows in one direction from input to output
Recurrent NN (RNN)
® Directed cycles in the network
® Popular in natural language processing, speech and
handwriting recognition

® Example of very successful deep RNN architecture: LSTM,
“Long short-term memory”

® Can be trained by backprop, like our feed-forward nets

Autoencoder - learn representation for data with
unsupervised learning

Hundreds of other NN types, new ones each month

33

Building a Neural Network

Important Questions:

How many layers?

How to connect the layers

How many neurons in each layer?

What kind of functions can we represent in principle?
What kind of functions can we learn efficiently?

34

Neural Networks as Universal Approximators

e NN with at least one hidden layer can approximate any
continuous function arbitrarily well, given enough neurons
in the hidden layer

¢ Given a continuous function f(x)
e Consider f(x) intherange 0 < x < 1
e Given an arbitrarily small e > 0

e Theorem (Cybenko 1989)
There exists a 1-hidden-layer NN g(x) such that

If(x) —g(x)| <e forall 0<x<1

35

NN as Universal Approximators (2)

How is that possible?
Intuitively, it works by:
® Having lots of neurons in the hidden layer
* Two neurons together can approximate a step function
® Their sum is very close to f(x) in a tiny interval
® Their sum is almost 0 everywhere else
Demo from
http://neuralnetworksanddeeplearning.com/
chap4.html

Note: constant b in demo is what we called wy

36

http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html

NN as Universal Approximators (3)

Comments:

e The theorem does not mean that any network can
approximate any function arbitrarily well

e The theorem says that by adding more and more hidden
neurons, we can make the error smaller and smaller

¢ The theorem is only about continuous function. But we can
also approximate functions with discontinuous jumps pretty
well

37

NN as Universal Approximators (4)

More comments:
e Why are we using multilayer “deep” networks if 1 hidden
layer is enough in theory?
e Short answers:

e Efficiency of learning
® Size of representation

e Details: http://neuralnetworksanddeeplearning.

com/chap5.html

38

http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap5.html

Network Architecture - fully connected

e Review - usually, connections are only
from one layer to the next

e Some recent success with adding connections to layers
“further up” (not discussed here)

e Simplest architecture: fully connected

® Each neuron on layer n
connected to each neuron on layer n+ 1

hidden layer 1 hidden layer 2 hidden layer 3

Image source: http://neuralnetworksanddeeplearning.com/chap6.html

39

http://neuralnetworksanddeeplearning.com/chap6.html

Sparse Network Architectures

Input layer Hidden layer Output layer
(Feature map)

O O

O e Opposite of fully connected:

sparse

* Neuron connected to only
some neurons on next layer
O ¢ |Important case for us:
Convolutional NN (next
O O lecture)
Image source: https://www.slideshare.

net/SeongwonHwang/presentations

40

https://www.slideshare.net/SeongwonHwang/presentations
https://www.slideshare.net/SeongwonHwang/presentations

Summary

Introduced neural networks

Backprop algorithm

e Examples of networks

e Next time: convolutional networks, deep networks
Move prediction in Go with deep convolutional networks

41

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search
	Machine Learning for Heuristic Search

