Computing Science (CMPUT) 455 Search, Knowledge, and Simulations

James Wright

Department of Computing Science University of Alberta james.wright@ualberta.ca

Fall 2021

1

- Machine Learning with simple features
- Minorisation-Maximisation for optimizing feature weights
- Using learned knowledge in UCT

- Assignment was 3 due yesterday (Monday, Nov 15)
 - Feedback by end of today (via email)
 - Resubmission (with 20% penalty) due Wednesday (Nov 17) at 11:55pm
- Reading: Maddison et al., *Move Evaluation in Go using Deep Convolutional Neural Networks*
- Quiz 10: Machine learning intro; Learning with simple features. (Double length)
- Activities
- Python code nn.py, nn3.py

- Quiz 9, UCB and Monte Carlo Tree Search
- 61 attempts. Average grade: 93.6%
- Lowest scores: Q7: 80%, Q17: 85%

- Quiz 9, UCB and Monte Carlo Tree Search
- 61 attempts. Average grade: 93.6%
- Lowest scores: Q7: 80%, Q17: 85%
- Q7 Assume that in a Bernoulli experiment we get 60 wins out of 100 tries. Then p = 0.6.

- Quiz 9, UCB and Monte Carlo Tree Search
- 61 attempts. Average grade: 93.6%
- Lowest scores: Q7: 80%, Q17: 85%
- Q7 Assume that in a Bernoulli experiment we get 60 wins out of 100 tries. Then p = 0.6.
 - False. If p = 0.6, then 60 is the expected number of wins. However, it is possible to get a different number of wins than the expectation. E.g., you don't always get exactly 5 wins for every 10 flips of a fair coin.

- Q17 In regular MCTS, we do not store the states reached during the default policy phase. What would happen for a complex search problem if we would store them in the tree as well?
 - a The program would play much better
 - b We would run out of memory quickly
 - c Most of those states would be useless since they are never reached again
 - d The search would become faster
 - e The shape of the tree would become extremely unbalanced

- Q17 In regular MCTS, we do not store the states reached during the default policy phase. What would happen for a complex search problem if we would store them in the tree as well?
 - a The program would play much better
 - b We would run out of memory quickly
 - c Most of those states would be useless since they are never reached again
 - d The search would become faster
 - e The shape of the tree would become extremely unbalanced
 - b,c, and e

Machine Learning with Simple Features

- Review Simple features in Go
- Implementation in Go4 and Go5
- Evaluation with features
- Learning feature weights
- Go4 used features in simulation policy

- We discussed simple features in Lecture 11 as an example of knowledge
- · We also saw simple features in Remi Coulom's paper
- Here: review with focus on implementation in Go4 and Go5
- Feature: boolean-valued statement about a move
- Fixed set of features {*f_i*}
 - $f_i = 1$ means feature *i* is true for a move **active feature**
 - $f_i = 0$ feature *i* is false for a move inactive
- Describe each move by its feature vector $F = (f_i)$
 - Example: (0,0,1,1,0,1,0,0,0,1,...)
- Alternative: list of indices of active features

• (2, 3, 5, 9,...)

Simple Features Implementation in Go4 and Go5

- Implementation in go4/feature.py
- 26 basic features, plus about 950 small pattern features
- Similar to features in Coulom's paper and in our Fuego program
- · Each legal move has a small set of active features
- Features form groups of *mutually exclusive* features
 - In each group, at most one feature is active
 - Example: area around each move matches exactly one of the about 950 patterns
 - All the other pattern features are inactive, do not match

Basic Features

```
FeBasicFeatures = {
"FE PASS NEW": 0,
"FE PASS CONSECUTIVE": 1,
"FE CAPTURE": 2,
"FE ATARI KO": 3,
"FE ATARI OTHER": 4,
"FE SELF ATARI": 5,
"FE LINE 1": 6,
"FE LINE 2": 7,
"FE LINE 3": 8,
"FE DIST PREV 2": 9,
"FE_DIST_PREV_3": 10,
. . .
"FE DIST PREV 9": 16,
"FE DIST PREV OWN 0": 17,
"FE_DIST_PREV_OWN_2": 18,
. . .
"FE DIST PREV OWN 9": 25
```

- Measure distance between two points on board
- Points (*x*1, *y*1) and (*x*2, *y*2)
- dx = |x1 x2|, dy = |y1 y2|
- Distance metric $d(dx, dy) = dx + dy + \max(dx, dy)$
- Example:
 - Points (3,5) and (4,3)
 - dx = 1, dy = 2
 - $d(dx, dy) = 1 + 2 + \max(1, 2) = 5$

- Distance metric $d(dx, dy) = dx + dy + \max(dx, dy)$
- Why not just use Manhattan or Euclidean distance?
- This metric is more fine-grained than Manhattan
- Can distinguish more cases
 - Example: (2,1) and (3,0) have different distances from (0,0)

- This metric is integer-valued, easier to use than Euclidean
 - Example: Euclidean distance

•
$$d(2,1) = sqrt(5) = 2.236....$$

Types of Distance Features

- Feature group: Distance to previous stone (last move by opponent)
 - FE_DIST_PREV_2 .. FE_DIST_PREV_9
- Feature group: Distance to previous own stone (our move before that)
 - FE_DIST_PREV_OWN_0, FE_DIST_PREV_OWN_2, FE_DIST_PREV_OWN_9
 - FE_DIST_PREV_OWN_0: play again at same point after opponent's capture
 - Easture group: Line on the board (counting from add
- Feature group: Line on the board (counting from edge)
 - Line 1, or Line 2, or Line 3 ...
 - FE_LINE_1, FE_LINE_2, FE_LINE_3

Pass and Tactics

Feature group: pass move

- FE_PASS_NEW: previous move was not a pass
- FE_PASS_CONSECUTIVE: previous move was also a pass
- Feature group: atari move
 - FE_ATARI_KO, FE_ATARI_OTHER
- Other simple tactics (not a group, not mutually exclusive)
 - FE_CAPTURE
 - FE_SELF_ATARI

- Feature group: 3×3 area centered on candidate move
- Move can also be on edge of board
- About 950 different cases
 - By far the biggest feature group in Go4
 - Implementation from michi program: see go4/pattern.py
 - Review discussion of patterns in Lecture 13

Evaluation Function from Simple Features

- Evaluate one move m
- Which features *f_i* are *active* for *m*?
- About 1000 features
- Only about 5-10 are active for any given move
- Different moves have different active features
- Simplest evaluation function: linear combination
- Learn a weight w_i for each feature
- $eval(m) = \sum w_i f_i$

Evaluation Function (2)

- This is a sum of about 1000 terms
- Most terms are 0
- Only need to sum the active features

•
$$\sum w_i f_i = \sum_{f_i=1} w_i$$

- Example: $f_0 = 0, f_1 = 1, f_2 = 0, f_3 = 0, f_4 = 1$
- $eval(m) = 0 \times w_0 + 1 \times w_1 + 0 \times w_2 + 0 \times w_3 + 1 \times w_4$ = $w_1 + w_4$
- Compare: in Coulom's approach, evaluation is the product of active feature weights

•
$$eval(m) = \prod_{f_i=1} w_i$$

Move Prediction using Features

- What is move prediction?
 - Predict which move a master player would choose in a given position
 - Example of supervised learning position is labeled by the master move
- Why move prediction?
 - Use for move ordering in search
 - Use for better moves in simulation policies (Go4 policy)

- Fast: use simple features
- Slow: use deep neural network
- Tradeoffs:
 - Deep neural networks are much better move predictors
 - Simple features are several orders of magnitude faster, especially on normal CPU without custom hardware

Overview of the Feature Learning Process

- Collect training/test data
 - Game records with master moves
- Label each move in each position by its features
- Run an algorithm to learn feature weights
 - Example: Coulom's Minorization/Maximization algorithm
- Use the learned weights as knowledge in your program to select good moves

Game Data for 19×19 Go Move Prediction

- Which data to learn from?
 - 1. Games between professional players
 - Can get about 100,000 games
 - 2. Games between amateur players
 - Can get around 1 million games
 - 3. Games between computer programs
 - Unlimited, if enough time/hardware to generate them
- For learning simple concepts, more variety/weaker players may be better
- One option: learn only from stronger player/winner

- For Go4, we learned simple features for a 7×7 board
- No human master games available on this small board
- We created thousands of training games by self-play using the strong program Fuego
 - First 5 moves of game were chosen at random ...
 - ... to ensure diversity of training data
 - Only learned from the remaining moves in each game

Process for 19×19 Go:

- Foreach game g (tens of thousands of games)
- Foreach position p in game g (\approx 150-300 per game)
- Foreach legal move *m* in position *p* (≈20-362 per position)
- One data point: all the active features for this move
- One of these moves is **m***, the move played by the master

Classification problem:

- Compute score for each legal move
- Two classes of moves:
- class 1 = {highest scoring move}
- class 2 = {all other moves}
- Question: When is classification problem solved?

Classification problem:

- Compute score for each legal move
- Two classes of moves:
- class 1 = {highest scoring move}
- class 2 = {all other moves}
- Question: When is classification problem solved?
- A: When score of *m*^{*} is highest

Coulom's Feature Learning and Minorization/Maximization Algorithm

- Paper by Remi Coulom, *Computing Elo Ratings of Move Patterns in the Game of Go*
- · You already read it for the "knowledge" topic
- Now we discuss the machine learning part
- Main topics:
 - Represent move as group of active features
 - Bradley-Terry model to evaluate strength of a group of features
 - Minorization-Maximization algorithm to learn weight for each feature
 - How to use in Go program

- For each move, about 10 features are active (less for the simple features in Go4)
- In learning, we represent each move only by its group of features
- Learning objective:
- Group of features representing the master move... ... is stronger than...
 - ... Feature group representing any other legal move

Main Advantage of Learning with Features

- Tabular learning of moves for full states:
 - Just memorizes which particular moves were good in particular positions
 - No generalization
- Learning with features:
 - Learn which features are generally good or bad
 - Learn which features work in many examples
 - This approach provides *generalization* to new positions, not seen before
 - Much more useful in practice, each new game has different positions

Feature Strength and Bradley-Terry Model

- Each individual feature *f_i* has a strength
 - We call it the weight w_i
 - In the paper it is called Gamma value, γ_i .
 - Larger weight means better feature
- · How do two features compare: probabilistic model

• P(feature
$$f_i$$
 beats f_j) = $\frac{w_i}{w_i + w_j}$

Example

- f_1 = capture, w_1 = 30.68
- f_2 = extension, $w_2 = 11.37$

Example

- f_1 = capture, $w_1 = 30.68$
- *f*₂ = extension, *w*₂ = 11.37
- P(capture beats extension) = 30.68/(30.68 + 11.37) ≈ 0.73
- P(extension beats capture) = 11.37/(30.68 + 11.37) ≈ 0.27

Example

- $f_1 = \text{capture}, w_1 = 30.68$
- *f*₂ = extension, *w*₂ = 11.37
- P(capture beats extension) = 30.68/(30.68 + 11.37) ≈ 0.73
- P(extension beats capture) = 11.37/(30.68 + 11.37) ≈ 0.27
- f_3 = distance 5 to previous move, $w_3 = 1.58$
- P(capture beats distance 5...) = $30.68/(30.68 + 1.58) \approx 0.95$

From Single Features to Groups - Generalized Bradley-Terry Model

- A move has more than 1 feature (about 5-10 is typical)
 - Coulom refers to these combinations as "teams"
- How to combine them?
- · Generalized Bradley-Terry model: multiply them
- Example: move *m* has active features *f*₂, *f*₅ and *f*₆
- strength(m) = $w_2 \times w_5 \times w_6$

- To compare moves, we estimate their win probabilities as before.
- P(move *m*₁ beats move *m*₂) =

 $\frac{\text{strength}(m_1)}{\text{strength}(m_1) + \text{strength}(m_2)}$

- Example:
 - m_1 has features f_1, f_2 , strength $w_1 \times w_2$
 - m_2 has features f_2 , f_5 , f_6 , strength $w_2 \times w_5 \times w_6$
 - P(m₁ beats m₂) =

$$\frac{(w_1 \times w_2)}{(w_1 \times w_2) + (w_2 \times w_5 \times w_6)}$$
(2)

(1)

Comparing Multiple Moves

- Similarly, we can compare all legal moves in a Go position
- P(move m_i wins) = $\frac{\text{strength}(m_i)}{\sum_{j \in legalmoves} \text{strength}(m_j)}$
- Assumptions:
 - Strength can be measured on totally ordered scale
 - Not true for rock-paper-scissors like scenarios, A beats B beats C beats A
 - Strength of combination of features can be measured by product
 - Not clear why it should be true in general
 - Not true if features are strongly dependent
 - Strong assumptions, but it seems to work anyway...

Learning Weights with Generalized Bradley-Terry Model

- Goal: find weights *w_i* for all features...
- ...such that probability of playing the master moves is maximized
- Maximize $L = \prod_{j=1}^{N} P(R_j)$
- Where *P*(*R_j*) is probability of playing master move in test case *j*
- *P*(*R_j*) can be expressed as a function of the weights *w_i* (details in paper)

Learning Weights with Generalized Bradley-Terry Model

- Goal: find weights *w_i* for all features...
- ...such that probability of playing the master moves is maximized
- Maximize $L = \prod_{j=1}^{N} P(R_j)$
- Where *P*(*R_j*) is probability of playing master move in test case *j*
- *P*(*R_j*) can be expressed as a function of the weights *w_i* (details in paper)

Question: What do we mean by "move *i* beats move *j*"?

Minorization-Maximization (MM) Algorithm

- Problem: it is difficult to maximize L directly
- Approach: find a simpler formula *m* which minorizes *L*:
 - *m* approximates *L*
 - m(x) < L(x)
- We can directly compute the maximum of *m* with respect to each weight *w_i*

Fig. 1. Minorization-maximization.

Minorization-Maximization (MM) Algorithm

- Idea: log L is a sum of simpler log terms
- Can approximate log function:
- For x close to 1, $\log x \approx x 1$
- Also, $\log x \le x 1$, so $1 x \le -\log x$
- 1 x minorizes *logx*

Minorization-Maximization Iteration

- Start with some weights settings, e.g. $w_i = 1$ for all *i*
- Do one step of MM for each weight w_i
- This brings us closer to the maximum of L
- · Repeat the process from here
- Each repetition brings closer approximation
- Remi's C++ implementation of MM: https://www.remi-coulom.fr/Amsterdam2007/

Fig. 1. Minorization-maximization.

Review - Summary of the Learning Process

- Collect training data (game records with master moves)
- Label each move in each position by its features
- Run MM to compute feature weights
- Use the weights as knowledge in your program to select good moves

Two main applications

- 1. In-tree knowledge for better move selection during MCTS
 - Three ideas:
 - Node initialization, additive knowledge, multiplicative knowledge
 - We'll cover these topics in the last part of these slides
- 2. Better probabilistic simulation policies
 - Lecture 14, Go4 program

From Move Weights to Move Probabilies

- · Some applications require probabilities, not just weights
 - Probabilistic simulation policies
 - Multiplicative in-tree knowledge
- Now we finally have a way to learn such probabilities
- Idea: run MM to learn feature weights w_i
- Compute the strength of each move as product of its features' weights
- Choose each move with probability proportional to its strength

Extensions to the MM Model (1) - LFR

- Wistuba et al (2013) Latent Factor Ranking (LFR) algorithm
- Main idea: take interactions of features into account
- Two features may reinforce or cancel each other's effects
- Taking the sum $w_1 + w_2$ of feature weights does not work well in such cases
- Learn *interaction terms* as well as individual feature weights

LFR Continued

- Problem: for *n* features there are
 - $\binom{n}{2}$ pairwise interactions
 - $\binom{\overline{n}}{3}$ interactions of three features
 - $\binom{n}{k}$ interactions of k features
- Example: $n = 2000, {n \choose 2} \approx 2000000, {n \choose 3} > 1.3$ billion
- Solution: develop smart algorithm to learn only the most important interactions
- Achieves better move prediction than MM

Extensions to the MM Model (2) - FBT

- Factorization Bradley-Terry (FBT) model (Xiao 2016)
- Problem with LFR algorithm:
- The weights it computes are "just numbers"
- Larger weights are better, but...
- ... no interpretation as probabilities
- Harder to use in a program than MM weights
- FBT adds interaction terms in a probabilistic model
- Achieves better move prediction than MM and LFR

Limits of Learning from Game Records

• First main limit:

- Can only learn what is in the data
- New situation may require different moves not seen before
- Second main limit:
 - Can only learn what can be represented in our model
 - Simple features cannot represent high-level concepts
 - Neural nets are **much** more powerful
- Important question for any learning algorithm:
 - How well can it pick up the knowledge that is "hidden" in the data and transfer it into a learned model?

Prediction of master moves in Go

- What is a good prediction score?
- Random prediction on 19×19 : under 0.5%
- Simple features and algorithms (Go4, MM): maybe 20%
- Better features and algorithms (Fuego, FBT): 30-40%
- Human amateur master players: 40-50%
- AlphaGo neural net: 57%
- Professional human players: similar to AlphaGo?

Strong Move Prediction vs Playing Well

- A better move predictor does not necessarily make a better player
- Most Go games have some very specific, complex tactics
 - Often not covered by general learned knowledge
- Playing moves that are good "on average" may fail in such situations
- Need precise "reading" (lookahead, search)
- Move prediction can help focus the search
- It cannot find all good moves by itself
- This is still very much true in AlphaGo

- Can never reach 100% prediction
- Two main reasons
 - Multiple equally good moves
 - Different definitions of "best" move

Equally Good Moves

- Reasons why moves are equally good:
- Symmetry, e.g. in opening
- Same point value in endgame
 - Example: there may be five 2-point moves in the endgame
 - No reason to prefer one over the other
 - Even a perfect player has only a 20% chance in move prediction
- Forcing moves:
 - Opponent must answer such moves
 - Can often be played at different times without changing the result
 - Hard to predict when exactly a master will play it
- Moves may have different strong and weak features which balance each other
 - Choice is "matter of taste", playing style

Different Definitions of "Best" Move

- I think I am winning. What is the best move?
- In theory, any move which preserves a win (follows a winning strategy) is equally good
- In practice, neither me nor my opponent are perfect players
- One answer: maximize my probability of winning
- What does it mean? It depends on modeling myself and my opponent
 - Example: in TicTacToe, simulation player was better than perfect player against random opponent
- I think I'm losing. How do I best trick the opponent into a mistake?

- Discussed learning with simple features
- Coulom's approach:
- Generalized Bradley-Terry model for strength of moves
- MM algorithm for learning weights
- · Use as in-tree knowledge or as simulation policy

Using Knowledge in UCT

- Regular UCT: select best child by UCT formula
- UCT value of move *i* from parent *p*:

$$UCT(i) = \hat{\mu}_i + C \sqrt{\frac{\log n_p}{n_i}}$$

- This uses only information from simulations
 - Empirical winrate
 *µ*_i, number of simulations *n*_i, number of simulations for parent *n*_p
- We can improve move selection by using learned knowledge
 - Examples: simple features, neural networks
- · Idea: give good moves a bonus before simulations start

Three ways:

- 1. Initialization of node statistics
- 2. Additive knowledge term
- 3. Multiplicative knowledge term

- At the beginning, we have only few simulations
 - Win rate $\hat{\mu}_i$ is very noisy
 - Knowledge may be more reliable, can help to guide search
- Later, we may have many simulations for a node
 - We should trust them more now
 - All knowledge is heuristic, may be wrong
 - Slowly phase out knowledge as more simulations accumulate

1. Initialization of Node Statistics

- Normal UCT: count number of simulations and wins
- Initialize to 0
 - For all children i
 - Wins *w_i* = 0
 - Simulations n_i = 0
- We can initialize with other values to encode knowledge about moves
 - Give good moves some imaginary initial "wins"
 - · Give bad moves some imaginary initial "losses"

1. Initialization of Node Statistics (2)

- How to initialize n_i and w_i ?
- Size of *n_i* expresses how reliable the knowledge is
- Winrate *w_i/n_i* expresses how good or bad the move is, according to the knowledge
- Original work by Gelly and Silver (2007): knowledge worth up to 50 simulations
- Fuego program: simple feature knowledge converted into winrate/simulations
- Decay over time: yes
 - Over time, real simulation statistics dominate over initialization

2. Additive Knowledge

Idea: add a term to UCT formula

$$UCT(i) = \hat{\mu}_i + \text{knowledgeValue}(i) + C \sqrt{\frac{\log n_p}{n_i}}$$

- knowledgeValue(i) computed e.g. from simple features or neural network
- · Must scale it relative to other terms by tuning
 - Too small: little influence on search
 - Too big: too greedy, ignores winrate
- Decay over time: must be explicitly programmed
- Multiply knowledge term by some decay factor
 - Examples: $1/n_i$, $1/(n_i + 1)$, $\sqrt{1/n_i}$,...

3. Multiplicative Knowledge, Probabilistic UCT (PUCT)

- Idea: explore promising moves more
- Knowledge used:
 - Probability *p_i* that move *i* is best
- Multiply exploration term by *p_i*

$$PUCT(i) = \hat{\mu}_i + \mathbf{p_i} \times C_{\sqrt{\frac{\log n_p}{n_i}}}$$

- Decay over time: yes
 - Divide by *n_i* in the exploration term
- Exploration term smaller than before, because $p_i \leq 1$
 - May need to balance by increasing C
- AlphaGo: exploration term $p_i \times C/(n_i + 1)$

Summary of Knowledge in UCT

- Knowledge can be used in an in-tree selection formula
- Independent from using knowledge during the simulation phase
- Can be (much) slower, used only in tree nodes, not in each simulation step
- Different approaches have been tried successfully
 - 1. Initialization of node statistics by knowledge
 - 2. Additive term
 - 3. Multiplicative term, PUCT