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455 Today - Lecture 18

• Machine Learning with simple features
• Minorisation-Maximisation for optimizing feature weights
• Using learned knowledge in UCT
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Coursework

• Assignment was 3 due yesterday (Monday, Nov 15)
• Feedback by end of today (via email)
• Resubmission (with 20% penalty) due Wednesday (Nov 17)

at 11:55pm
• Reading: Maddison et al., Move Evaluation in Go using

Deep Convolutional Neural Networks
• Quiz 10: Machine learning intro; Learning with simple

features. (Double length)
• Activities
• Python code nn.py, nn3.py
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Quiz 9 Review

• Quiz 9, UCB and Monte Carlo Tree Search
• 61 attempts. Average grade: 93.6%
• Lowest scores: Q7: 80%, Q17: 85%

Q7 Assume that in a Bernoulli experiment we get 60 wins out
of 100 tries. Then p = 0.6.
• False. If p = 0.6, then 60 is the expected number of wins.

However, it is possible to get a different number of wins
than the expectation. E.g., you don’t always get exactly 5
wins for every 10 flips of a fair coin.
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Quiz 9 Review

Q17 In regular MCTS, we do not store the states reached
during the default policy phase. What would happen for a
complex search problem if we would store them in the tree
as well?

a The program would play much better
b We would run out of memory quickly
c Most of those states would be useless since they are never

reached again
d The search would become faster
e The shape of the tree would become extremely unbalanced

• b,c, and e
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Machine Learning with Simple Features

• Review - Simple features in Go
• Implementation in Go4 and Go5

• Evaluation with features
• Learning feature weights
• Go4 used features in simulation policy
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Simple Features

• We discussed simple features in Lecture 11 as an example
of knowledge
• We also saw simple features in Remi Coulom’s paper
• Here: review with focus on implementation in Go4 and Go5

• Feature: boolean-valued statement about a move
• Fixed set of features {fi}

• fi = 1 means feature i is true for a move - active feature
• fi = 0 - feature i is false for a move - inactive

• Describe each move by its feature vector F = (fi)
• Example: (0,0,1,1,0,1,0,0,0,1,...)

• Alternative: list of indices of active features
• (2, 3, 5, 9,...)
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Simple Features Implementation in Go4 and
Go5

• Implementation in go4/feature.py

• 26 basic features, plus about 950 small pattern features
• Similar to features in Coulom’s paper and in our Fuego

program
• Each legal move has a small set of active features
• Features form groups of mutually exclusive features

• In each group, at most one feature is active
• Example: area around each move matches exactly one of

the about 950 patterns
• All the other pattern features are inactive, do not match
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Basic Features

FeBasicFeatures = {
"FE_PASS_NEW": 0,
"FE_PASS_CONSECUTIVE": 1,
"FE_CAPTURE": 2,
"FE_ATARI_KO": 3,
"FE_ATARI_OTHER": 4,
"FE_SELF_ATARI": 5,
"FE_LINE_1": 6,
"FE_LINE_2": 7,
"FE_LINE_3": 8,
"FE_DIST_PREV_2": 9,
"FE_DIST_PREV_3": 10,
...
"FE_DIST_PREV_9": 16,
"FE_DIST_PREV_OWN_0": 17,
"FE_DIST_PREV_OWN_2": 18,
...
"FE_DIST_PREV_OWN_9": 25

}
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Distance Features

• Measure distance between two points on board
• Points (x1, y1) and (x2, y2)
• dx = |x1− x2|, dy = |y1− y2|
• Distance metric d(dx ,dy) = dx + dy +max(dx ,dy)
• Example:

• Points (3,5) and (4,3)
• dx = 1, dy = 2
• d(dx ,dy) = 1 + 2 +max(1,2) = 5
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Distance Metric Discussion

• Distance metric d(dx ,dy) = dx + dy +max(dx ,dy)
• Why not just use Manhattan or Euclidean distance?
• This metric is more fine-grained than Manhattan
• Can distinguish more cases

• Example: (2,1) and (3,0) have different distances from (0,0)
• d(2,1) = 5, d(3,0) = 6

• This metric is integer-valued, easier to use than Euclidean
• Example: Euclidean distance
• d(2,1) = sqrt(5) = 2.236....

11



Types of Distance Features

• Feature group: Distance to previous stone
(last move by opponent)
• FE_DIST_PREV_2 .. FE_DIST_PREV_9

• Feature group: Distance to previous own stone
(our move before that)
• FE_DIST_PREV_OWN_0, FE_DIST_PREV_OWN_2,

FE_DIST_PREV_OWN_9
• FE_DIST_PREV_OWN_0:

play again at same point after opponent’s capture
• Feature group: Line on the board (counting from edge)

• Line 1, or Line 2, or Line 3 ...
• FE_LINE_1, FE_LINE_2, FE_LINE_3
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Pass and Tactics

• Feature group: pass move
• FE_PASS_NEW:

previous move was not a pass
• FE_PASS_CONSECUTIVE:

previous move was also a pass
• Feature group: atari move

• FE_ATARI_KO, FE_ATARI_OTHER
• Other simple tactics (not a group, not mutually exclusive)

• FE_CAPTURE
• FE_SELF_ATARI
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Pattern features

• Feature group: 3× 3 area centered on candidate move
• Move can also be on edge of board
• About 950 different cases

• By far the biggest feature group in Go4
• Implementation from michi program: see
go4/pattern.py

• Review discussion of patterns in Lecture 13
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Evaluation Function from Simple Features

• Evaluate one move m
• Which features fi are active for m?
• About 1000 features
• Only about 5-10 are active for any given move
• Different moves have different active features
• Simplest evaluation function: linear combination
• Learn a weight wi for each feature
• eval(m) =

∑
wi fi
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Evaluation Function (2)

• This is a sum of about 1000 terms
• Most terms are 0
• Only need to sum the active features
• ∑wi fi =

∑
fi=1 wi

• Example: f0 = 0, f1 = 1, f2 = 0, f3 = 0, f4 = 1
• eval(m) = 0× w0 + 1× w1 + 0× w2 + 0× w3 + 1× w4
= w1 + w4

• Compare: in Coulom’s approach, evaluation is the product
of active feature weights
• eval(m) =

∏
fi=1 wi
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Move Prediction using Features

• What is move prediction?
• Predict which move a master player

would choose in a given position
• Example of supervised learning -

position is labeled by the master move
• Why move prediction?

• Use for move ordering in search
• Use for better moves in simulation policies (Go4 policy)

17



Fast vs Slow Move Prediction

• Fast: use simple features
• Slow: use deep neural network
• Tradeoffs:

• Deep neural networks are much better move predictors
• Simple features are several orders of magnitude faster,

especially on normal CPU without custom hardware
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Overview of the Feature Learning Process

• Collect training/test data
• Game records with master moves

• Label each move in each position by its features
• Run an algorithm to learn feature weights

• Example:
Coulom’s Minorization/Maximization algorithm

• Use the learned weights as knowledge in your program to
select good moves
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Game Data for 19× 19 Go Move Prediction

• Which data to learn from?
1. Games between professional players

• Can get about 100,000 games
2. Games between amateur players

• Can get around 1 million games
3. Games between computer programs

• Unlimited, if enough time/hardware to generate them

• For learning simple concepts,
more variety/weaker players may be better
• One option: learn only from stronger player/winner
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Data for 7× 7 Go Move Prediction

• For Go4, we learned simple features for a 7× 7 board
• No human master games available on this small board
• We created thousands of training games by self-play using

the strong program Fuego
• First 5 moves of game were chosen at random ...
• ... to ensure diversity of training data
• Only learned from the remaining moves in each game
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Getting Features from Game Data

Process for 19× 19 Go:
• Foreach game g (tens of thousands of games)
• Foreach position p in game g (≈150-300 per game)
• Foreach legal move m in position p (≈20-362 per position)
• One data point: all the active features for this move
• One of these moves is m∗, the move played by the master
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Move Prediction as Classification Problem

Classification problem:
• Compute score for each legal move
• Two classes of moves:
• class 1 = {highest scoring move}
• class 2 = {all other moves}
• Question: When is classification problem solved?

• A: When score of m∗ is highest
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Coulom’s Feature Learning and
Minorization/Maximization Algorithm

• Paper by Remi Coulom, Computing Elo Ratings of Move
Patterns in the Game of Go
• You already read it for the “knowledge” topic
• Now we discuss the machine learning part
• Main topics:

• Represent move as group of active features
• Bradley-Terry model to evaluate strength of a group of

features
• Minorization-Maximization algorithm to learn weight for

each feature
• How to use in Go program
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Represent Move as Group of Features

• For each move, about 10 features are active
(less for the simple features in Go4)
• In learning, we represent each move only

by its group of features
• Learning objective:
• Group of features representing the master move...

... is stronger than...

... Feature group representing any other legal move
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Main Advantage of Learning with Features

• Tabular learning of moves for full states:
• Just memorizes which particular moves were good in

particular positions
• No generalization

• Learning with features:
• Learn which features are generally good or bad
• Learn which features work in many examples
• This approach provides generalization to new positions, not

seen before
• Much more useful in practice, each new game has different

positions

26



Feature Strength and Bradley-Terry Model

• Each individual feature fi has a strength
• We call it the weight wi
• In the paper it is called Gamma value, γi .
• Larger weight means better feature

• How do two features compare: probabilistic model
• P(feature fi beats fj ) =

wi
wi+wj
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Example

• f1 = capture, w1 = 30.68
• f2 = extension, w2 = 11.37

• P(capture beats extension) =
30.68/(30.68 + 11.37) ≈ 0.73
• P(extension beats capture) =

11.37/(30.68 + 11.37) ≈ 0.27

• f3 = distance 5 to previous move, w3 = 1.58
• P(capture beats distance 5...) =

30.68/(30.68 + 1.58) ≈ 0.95
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From Single Features to Groups - Generalized
Bradley-Terry Model

• A move has more than 1 feature (about 5-10 is typical)
• Coulom refers to these combinations as “teams”

• How to combine them?
• Generalized Bradley-Terry model: multiply them
• Example: move m has active features f2, f5 and f6
• strength(m) = w2 × w5 × w6
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Comparing Two Moves

• To compare moves, we estimate their win probabilities as
before.
• P(move m1 beats move m2) =

strength(m1)

strength(m1) + strength(m2)
(1)

• Example:
• m1 has features f1, f2, strength w1 × w2
• m2 has features f2, f5, f6, strength w2 × w5 × w6
• P(m1 beats m2) =

(w1 × w2)

(w1 × w2) + (w2 × w5 × w6)
(2)
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Comparing Multiple Moves

• Similarly, we can compare all legal moves in a Go position

• P(move mi wins) = strength(mi )∑
j∈legalmoves strength(mj )

• Assumptions:
• Strength can be measured on totally ordered scale

• Not true for rock-paper-scissors like scenarios,
A beats B beats C beats A

• Strength of combination of features can be measured by
product

• Not clear why it should be true in general
• Not true if features are strongly dependent

• Strong assumptions, but it seems to work anyway...
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Learning Weights with Generalized
Bradley-Terry Model

• Goal: find weights wi for all features...
• ...such that probability of playing the master moves is

maximized
• Maximize L =

∏N
j=1 P(Rj)

• Where P(Rj) is probability of playing master move in test
case j
• P(Rj) can be expressed as a function of the weights wi

(details in paper)

Question: What do we mean by “move i beats move j”?
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Minorization-Maximization (MM) Algorithm

• Problem: it is difficult to maximize L directly
• Approach: find a simpler formula m which minorizes L:

• m approximates L
• m(x) < L(x)

• We can directly compute the maximum of m with respect to
each weight wi
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Minorization-Maximization (MM) Algorithm

• Idea: − log L is a sum of simpler log terms
• Can approximate log function:
• For x close to 1, log x ≈ x − 1
• Also, log x ≤ x − 1, so 1− x ≤ −logx
• 1− x minorizes −logx
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Minorization-Maximization Iteration

• Start with some weights settings, e.g. wi = 1 for all i
• Do one step of MM for each weight wi

• This brings us closer to the maximum of L
• Repeat the process from here
• Each repetition brings closer approximation
• Remi’s C++ implementation of MM:
https://www.remi-coulom.fr/Amsterdam2007/
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Review - Summary of the Learning Process

• Collect training data (game records with master moves)
• Label each move in each position by its features
• Run MM to compute feature weights
• Use the weights as knowledge in your program to select

good moves
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How to use the Learned Model

Two main applications
1. In-tree knowledge for better move selection during MCTS

• Three ideas:
• Node initialization, additive knowledge, multiplicative

knowledge
• We’ll cover these topics in the last part of these slides

2. Better probabilistic simulation policies
• Lecture 14, Go4 program
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From Move Weights to Move Probabilies

• Some applications require probabilities, not just weights
• Probabilistic simulation policies
• Multiplicative in-tree knowledge

• Now we finally have a way to learn such probabilities
• Idea: run MM to learn feature weights wi

• Compute the strength of each move as product of its
features’ weights
• Choose each move with probability proportional to its

strength
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Extensions to the MM Model (1) - LFR

• Wistuba et al (2013) Latent Factor Ranking (LFR)
algorithm
• Main idea: take interactions of features into account
• Two features may reinforce or cancel each other’s effects
• Taking the sum w1 + w2 of feature weights does not work

well in such cases
• Learn interaction terms as well as individual feature

weights
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LFR Continued

• Problem: for n features there are
• (n

2

)
pairwise interactions

• (n
3

)
interactions of three features

• (n
k

)
interactions of k features

• Example: n = 2000,
(n

2

)
≈ 2000000 ,

(n
3

)
> 1.3 billion

• Solution: develop smart algorithm to learn only the most
important interactions
• Achieves better move prediction than MM
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Extensions to the MM Model (2) - FBT

• Factorization Bradley-Terry (FBT) model (Xiao 2016)
• Problem with LFR algorithm:
• The weights it computes are “just numbers”
• Larger weights are better, but...
• ... no interpretation as probabilities
• Harder to use in a program than MM weights
• FBT adds interaction terms in a probabilistic model
• Achieves better move prediction than MM and LFR

41



Limits of Learning from Game Records

• First main limit:
• Can only learn what is in the data
• New situation may require different moves not seen before

• Second main limit:
• Can only learn what can be represented in our model
• Simple features cannot represent high-level concepts
• Neural nets are much more powerful

• Important question for any learning algorithm:
• How well can it pick up the knowledge that is “hidden” in the

data and transfer it into a learned model?
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Move Prediction - What to Expect?

Prediction of master moves in Go
• What is a good prediction score?
• Random prediction on 19× 19: under 0.5%
• Simple features and algorithms (Go4, MM): maybe 20%
• Better features and algorithms (Fuego, FBT): 30-40%
• Human amateur master players: 40-50%
• AlphaGo neural net: 57%
• Professional human players: similar to AlphaGo?
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Strong Move Prediction vs Playing Well

• A better move predictor does not necessarily make a better
player
• Most Go games have some very specific, complex tactics

• Often not covered by general learned knowledge
• Playing moves that are good “on average” may fail in such

situations
• Need precise “reading” (lookahead, search)
• Move prediction can help focus the search
• It cannot find all good moves by itself
• This is still very much true in AlphaGo
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Limits of Move Prediction

• Can never reach 100% prediction
• Two main reasons

• Multiple equally good moves
• Different definitions of “best” move
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Equally Good Moves

• Reasons why moves are equally good:
• Symmetry, e.g. in opening
• Same point value in endgame

• Example: there may be five 2-point moves in the endgame
• No reason to prefer one over the other
• Even a perfect player has only a 20% chance in move

prediction
• Forcing moves:

• Opponent must answer such moves
• Can often be played at different times without changing the

result
• Hard to predict when exactly a master will play it

• Moves may have different strong and weak features which
balance each other
• Choice is “matter of taste”, playing style
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Different Definitions of “Best” Move

• I think I am winning. What is the best move?
• In theory, any move which preserves a win (follows a

winning strategy) is equally good
• In practice, neither me nor my opponent are perfect players
• One answer: maximize my probability of winning
• What does it mean? It depends on modeling myself and

my opponent
• Example: in TicTacToe, simulation player was better than

perfect player against random opponent
• I think I’m losing. How do I best trick the opponent into a

mistake?
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Summary

• Discussed learning with simple features
• Coulom’s approach:
• Generalized Bradley-Terry model for strength of moves
• MM algorithm for learning weights
• Use as in-tree knowledge or as simulation policy
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Using Knowledge in UCT

• Regular UCT: select best child by UCT formula
• UCT value of move i from parent p:

UCT (i) = µ̂i + C

√
log np

ni

• This uses only information from simulations
• Empirical winrate µ̂i , number of simulations ni , number of

simulations for parent np

• We can improve move selection by using
learned knowledge
• Examples: simple features, neural networks

• Idea: give good moves a bonus before simulations start
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How to Use Knowledge

Three ways:
1. Initialization of node statistics
2. Additive knowledge term
3. Multiplicative knowledge term
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Decay Knowledge over Time

• At the beginning, we have only few simulations
• Win rate µ̂i is very noisy
• Knowledge may be more reliable, can help to guide search

• Later, we may have many simulations for a node
• We should trust them more now
• All knowledge is heuristic, may be wrong
• Slowly phase out knowledge as more simulations

accumulate
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1. Initialization of Node Statistics

• Normal UCT: count number of simulations and wins
• Initialize to 0

• For all children i
• Wins wi = 0
• Simulations ni = 0

• We can initialize with other values to encode knowledge
about moves
• Give good moves some imaginary initial “wins”
• Give bad moves some imaginary initial “losses”
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1. Initialization of Node Statistics (2)

• How to initialize ni and wi ?
• Size of ni expresses how reliable the knowledge is
• Winrate wi/ni expresses how good or bad the move is,

according to the knowledge
• Original work by Gelly and Silver (2007): knowledge worth

up to 50 simulations
• Fuego program: simple feature knowledge converted into

winrate/simulations
• Decay over time: yes

• Over time, real simulation statistics dominate over
initialization
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2. Additive Knowledge

• Idea: add a term to UCT formula

UCT (i) = µ̂i + knowledgeValue(i) + C

√
log np

ni

• knowledgeValue(i) computed e.g. from simple
features or neural network
• Must scale it relative to other terms by tuning

• Too small: little influence on search
• Too big: too greedy, ignores winrate

• Decay over time: must be explicitly programmed
• Multiply knowledge term by some decay factor

• Examples: 1/ni , 1/(ni + 1),
√

1/ni ,...

54



3. Multiplicative Knowledge, Probabilistic UCT
(PUCT)

• Idea: explore promising moves more
• Knowledge used:

• Probability pi that move i is best
• Multiply exploration term by pi

PUCT (i) = µ̂i + pi × C

√
log np

ni

• Decay over time: yes
• Divide by ni in the exploration term

• Exploration term smaller than before, because pi ≤ 1
• May need to balance by increasing C

• AlphaGo: exploration term pi × C/(ni + 1)
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Summary of Knowledge in UCT

• Knowledge can be used in an in-tree selection formula
• Independent from using knowledge during the simulation

phase
• Can be (much) slower, used only in tree nodes, not in each

simulation step
• Different approaches have been tried successfully

1. Initialization of node statistics by knowledge
2. Additive term
3. Multiplicative term, PUCT
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