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455 Today - Lecture 18

e Machine Learning with simple features
® Minorisation-Maximisation for optimizing feature weights
¢ Using learned knowledge in UCT



Coursework

¢ Assignment was 3 due yesterday (Monday, Nov 15)

® Feedback by end of today (via email)
® Resubmission (with 20% penalty) due Wednesday (Nov 17)
at 11:55pm

Reading: Maddison et al., Move Evaluation in Go using
Deep Convolutional Neural Networks

Quiz 10: Machine learning intro; Learning with simple
features. (Double length)

Activities
Python code nn.py, nn3.py



Quiz 9 Review

e Quiz 9, UCB and Monte Carlo Tree Search
¢ 61 attempts. Average grade: 93.6%
e | owest scores: Q7: 80%, Q17: 85%
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Quiz 9 Review

e Quiz 9, UCB and Monte Carlo Tree Search
¢ 61 attempts. Average grade: 93.6%
e | owest scores: Q7: 80%, Q17: 85%

Q7 Assume that in a Bernoulli experiment we get 60 wins out
of 100 tries. Then p = 0.6.

e false. If p = 0.6, then 60 is the expected number of wins.
However, it is possible to get a different number of wins
than the expectation. E.g., you don’t always get exactly 5
wins for every 10 flips of a fair coin.



Quiz 9 Review

Q17 Inregular MCTS, we do not store the states reached
during the default policy phase. What would happen for a
complex search problem if we would store them in the tree
as well?

a The program would play much better

b We would run out of memory quickly

¢ Most of those states would be useless since they are never
reached again

d The search would become faster

e The shape of the tree would become extremely unbalanced



Quiz 9 Review

Q17 Inregular MCTS, we do not store the states reached
during the default policy phase. What would happen for a
complex search problem if we would store them in the tree
as well?

a The program would play much better

b We would run out of memory quickly

¢ Most of those states would be useless since they are never
reached again

d The search would become faster

e The shape of the tree would become extremely unbalanced

® bc ande



Machine Learning with Simple Features

Review - Simple features in Go
Implementation in Go4 and Go5
Evaluation with features

Learning feature weights

Go4 used features in simulation policy



Simple Features

* We discussed simple features in Lecture 11 as an example
of knowledge

e We also saw simple features in Remi Coulom’s paper
e Here: review with focus on implementation in Go4 and Go5

e Feature: boolean-valued statement about a move
¢ Fixed set of features {f;}

® f. =1 means feature i is true for a move - active feature
e f, =0 - feature i is false for a move - inactive

¢ Describe each move by its feature vector F = (f;)
e Example: (0,0,1,1,0,1,0,0,0,1,...)

e Alternative: list of indices of active features
® (2, 3, 5, 9,...)



Simple Features Implementation in Go4 and
Gob

Implementation in go4/feature.py

26 basic features, plus about 950 small pattern features
Similar to features in Coulom’s paper and in our Fuego
program

Each legal move has a small set of active features

Features form groups of mutually exclusive features

® In each group, at most one feature is active

® Example: area around each move matches exactly one of
the about 950 patterns

® All the other pattern features are inactive, do not match



Basic Features

FeBasicFeatures = ({
"FE_PASS_NEW": 0,
"FE_PASS_CONSECUTIVE": 1,
"FE_CAPTURE": 2,
"FE_ATARI_KO": 3,
"FE_ATARI_OTHER": 4,
"FE_SELF_ATARI": 5,
"FE_LINE_1": 6,
"FE_LINE_2": 7,
"FE_LINE_3": 8,
"FE_DIST_PREV_2": 9,
"FE_DIST_PREV_3": 10,

"FE_DIST_PREV_9": 16,
"FE_DIST_PREV_OWN_O": 17,
"FE_DIST_PREV_OWN_2": 18,

"FE_DIST_PREV_OWN_9": 25



Distance Features

Measure distance between two points on board
Points (x1,y1) and (x2, y2)
dx =|x1—x2|, dy=|yl-y2|
Distance metric d(dx, dy) = dx + dy + max(dx, dy)
Example:

® Points (3,5) and (4,3)

e dx=1, dy=2
® d(dx,dy)=1+2+max(1,2)=5



Distance Metric Discussion

Distance metric d(dx, dy) = dx + dy + max(dx, dy)
Why not just use Manhattan or Euclidean distance?
This metric is more fine-grained than Manhattan

Can distinguish more cases
e Example: (2,1) and (3,0) have different distances from (0,0)
* d(2,1)=5,d(3,0)=6

This metric is integer-valued, easier to use than Euclidean

® Example: Euclidean distance
® d(2,1) = sqgrt(5) = 2.236....



Types of Distance Features

e Feature group: Distance to previous stone
(last move by opponent)

e FE_DIST_PREV_2 .. FE_DIST_PREV_9

e Feature group: Distance to previous own stone
(our move before that)
e FE_DIST PREV_OWN 0, FE_DIST PREV_OWN 2,
FE_DIST_PREV_OWN_9
e FE_DIST_PREV_OWN_O0:
play again at same point after opponent’s capture
e Feature group: Line on the board (counting from edge)

® Line 1, orLine 2,or Line 3 ...
e FE LINE 1, FE_LINE_2, FE_LINE_3



Pass and Tactics

e Feature group: pass move
e FE_PASS_NEW:
previous move was not a pass
e FE_PASS CONSECUTIVE:
previous move was also a pass
e Feature group: atari move
e FE_ATARI_KO, FE_ATARI_OTHER
e Other simple tactics (not a group, not mutually exclusive)

e FE_CAPTURE
e FE_SELF_ATARI



Pattern features

e Feature group: 3 x 3 area centered on candidate move

* Move can also be on edge of board
e About 950 different cases
® By far the biggest feature group in Go4
® |Implementation from michi program: see
go4d/pattern.py
® Review discussion of patterns in Lecture 13



Evaluation Function from Simple Features

e Evaluate one move m

e Which features f; are active for m?

e About 1000 features

e Only about 5-10 are active for any given move
e Different moves have different active features

e Simplest evaluation function: linear combination
® |learna weight w; for each feature

e eval(m) =) w;f;



Evaluation Function (2)

¢ This is a sum of about 1000 terms

® Most terms are 0

¢ Only need to sum the active features

°* > Wifi=3 1 4w

e Example: iy =0, =1, =0,13=0,f, =1

eseval(m=0xwop+1xw+0xwo+0xwz+1xwy
=Wy + Wy

e Compare: in Coulom’s approach, evaluation is the product
of active feature weights

e eval(m)=[[,_,w



Move Prediction using Features

e What is move prediction?

® Predict which move a master player
would choose in a given position

® Example of supervised learning -
position is labeled by the master move

e Why move prediction?
® Use for move ordering in search
® Use for better moves in simulation policies (Go4 policy)



Fast vs Slow Move Prediction

e Fast: use simple features

e Slow: use deep neural network
e Tradeoffs:

® Deep neural networks are much better move predictors
® Simple features are several orders of magnitude faster,
especially on normal CPU without custom hardware



Overview of the Feature Learning Process

Collect training/test data
e Game records with master moves

Label each move in each position by its features
Run an algorithm to learn feature weights

* Example:
Coulom’s Minorization/Maximization algorithm

Use the learned weights as knowledge in your program to
select good moves



Game Data for 19 x 19 Go Move Prediction

e Which data to learn from?
1. Games between professional players
® Can get about 100,000 games
2. Games between amateur players
® Can get around 1 million games
3. Games between computer programs
® Unlimited, if enough time/hardware to generate them

¢ For learning simple concepts,
more variety/weaker players may be better

¢ One option: learn only from stronger player/winner

20



Data for 7 x 7 Go Move Prediction

e For Go4, we learned simple features for a 7 x 7 board
¢ No human master games available on this small board
* We created thousands of training games by self-play using
the strong program Fuego
* First 5 moves of game were chosen at random ...

e ... to ensure diversity of training data
® Only learned from the remaining moves in each game
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Getting Features from Game Data

Process for 19 x 19 Go:

Foreach game g (tens of thousands of games)

Foreach position p in game g (=150-300 per game)
Foreach legal move m in position p (=~20-362 per position)
One data point: all the active features for this move

One of these moves is m*, the move played by the master

22



Move Prediction as Classification Problem

Classification problem:
e Compute score for each legal move
¢ Two classes of moves:
e class 1 = {highest scoring move}
class 2 = {all other moves}
Question: When is classification problem solved?



Move Prediction as Classification Problem

Classification problem:
e Compute score for each legal move
¢ Two classes of moves:
e class 1 = {highest scoring move}
class 2 = {all other moves}
Question: When is classification problem solved?
A: When score of m* is highest



Coulom’s Feature Learning and
Minorization/Maximization Algorithm

Paper by Remi Coulom, Computing Elo Ratings of Move
Patterns in the Game of Go

You already read it for the “knowledge” topic

Now we discuss the machine learning part
Main topics:
® Represent move as group of active features
* Bradley-Terry model to evaluate strength of a group of
features
® Minorization-Maximization algorithm to learn weight for
each feature
* How to use in Go program

24



Represent Move as Group of Features

¢ For each move, about 10 features are active
(less for the simple features in Go4)
* |n learning, we represent each move only
by its group of features
¢ |earning objective:
e Group of features representing the master move...

... is stronger than...
... Feature group representing any other legal move

25



Main Advantage of Learning with Features

e Tabular learning of moves for full states:

Just memorizes which particular moves were good in
particular positions
No generalization

¢ |earning with features:

Learn which features are generally good or bad

Learn which features work in many examples

This approach provides generalization to new positions, not
seen before

Much more useful in practice, each new game has different
positions

26



Feature Strength and Bradley-Terry Model

e Each individual feature f; has a strength

* We call it the weight w;
® In the paper it is called Gamma value, ~;.
® Larger weight means better feature

¢ How do two features compare: probabilistic model

* P(feature f; beats f)) = 3

27



Example

e f; = capture, wy = 30.68
e f, = extension, wo = 11.37

28



Example

f; = capture, wy = 30.68
f> = extension, wo, = 11.37

P(capture beats extension)
30.68/(30.68 + 11.37) ~

0.
P(extension beats capture)
11.37/(30.68 + 11.37) = 0.

28



Example

e f; = capture, wy = 30.68
e f, = extension, wo = 11.37
e P(capture beats extension)

30.68/(30.68 + 11.37) =~ 0.
® P(extension beats capture) =
11.37/(30.68 + 11.37) = 0.27

e f3 = distance 5 to previous move, wz = 1.58

e P(capture beats distance 5...) =
30.68/(30.68 + 1.58) ~ 0.95

28



From Single Features to Groups - Generalized
Bradley-Terry Model

e A move has more than 1 feature (about 5-10 is typical)
® Coulom refers to these combinations as “teams”

How to combine them?

Generalized Bradley-Terry model: multiply them
Example: move m has active features £, f5 and f;
strength(m) = wo x ws x wg

29



Comparing Two Moves

* To compare moves, we estimate their win probabilities as
before.

® P(move my beats move my) =

strength(my)
strength(my) + strength(m.)

e Example:

* my has features fi, fp, strength wy x we
®* m. has features f, fs5, f5, strength wo x ws x wg
® P(my beats mp) =

(W1 X W2)
(W1 X W2)+(W2 X Ws X Wg)

30



Comparing Multiple Moves

e Similarly, we can compare all legal moves in a Go position
strength(m)
strength(m))

* P(move m; wins) = S
j€ legalmoves

e Assumptions:
e Strength can be measured on totally ordered scale

® Not true for rock-paper-scissors like scenarios,
A beats B beats C beats A

e Strength of combination of features can be measured by
product

* Not clear why it should be true in general
® Not true if features are strongly dependent

e Strong assumptions, but it seems to work anyway...
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Learning Weights with Generalized
Bradley-Terry Model

Goal: find weights w; for all features...

...such that probability of playing the master moves is
maximized

Maximize L =[], P(R))

Where P(R;) is probability of playing master move in test
case j

P(R;) can be expressed as a function of the weights w;
(details in paper)
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Learning Weights with Generalized
Bradley-Terry Model

Goal: find weights w; for all features...

...such that probability of playing the master moves is
maximized

Maximize L =[], P(R))

Where P(R;) is probability of playing master move in test
case j

P(R;) can be expressed as a function of the weights w;
(details in paper)

Question: What do we mean by “move i beats move j’?
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Minorization-Maximization (MM) Algorithm

e Problem: it is difficult to maximize L directly
¢ Approach: find a simpler formula m which minorizes L:

®* m approximates L
* m(x) < L(x)

¢ We can directly compute the maximum of m with respect to
each weight w;

(a) Initial guess. (b) Minorization. (c) Maximization.

Fig. 1. Minorization-maximization.
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Minorization-Maximization (MM) Algorithm

ldea: —log L is a sum of simpler log terms
e Can approximate log function:

For x close to 1, log x ~ x — 1

Also, logx < x —1,s01 — x < —logx

® 1 — x minorizes —logx
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Minorization-Maximization lteration

Start with some weights settings, e.g. w; =1 for all i
Do one step of MM for each weight w;

This brings us closer to the maximum of L

Repeat the process from here

Each repetition brings closer approximation

Remi’s C++ implementation of MM:
https://www.remi-coulom.fr/Amsterdam2007/

(a) Initial guess. (b) Minorization. (c) Maximization.

Fig. 1. Minorization-maximization.
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https://www.remi-coulom.fr/Amsterdam2007/

Review - Summary of the Learning Process

Collect training data (game records with master moves)
Label each move in each position by its features
Run MM to compute feature weights

Use the weights as knowledge in your program to select
good moves
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How to use the Learned Model

Two main applications

1. In-tree knowledge for better move selection during MCTS
® Three ideas:
* Node initialization, additive knowledge, multiplicative

knowledge

* We’'ll cover these topics in the last part of these slides

2. Better probabilistic simulation policies
® Lecture 14, Go4 program
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From Move Weights to Move Probabilies

Some applications require probabilities, not just weights

® Probabilistic simulation policies
® Multiplicative in-tree knowledge

Now we finally have a way to learn such probabilities

Idea: run MM to learn feature weights w;

Compute the strength of each move as product of its
features’ weights

Choose each move with probability proportional to its
strength

38



Extensions to the MM Model (1) - LFR

e Wistuba et al (2013) Latent Factor Ranking (LFR)
algorithm

* Main idea: take interactions of features into account
* Two features may reinforce or cancel each other’s effects

e Taking the sum w; + ws of feature weights does not work
well in such cases

e | earn interaction terms as well as individual feature
weights

39



LFR Continued

Problem: for n features there are
* (3) pairwise interactions
* (3) interactions of three features
* (}) interactions of k features

Example: n = 2000, (3) ~ 2000000, (3) > 1.3 billion

Solution: develop smart algorithm to learn only the most
important interactions

Achieves better move prediction than MM

40



Extensions to the MM Model (2) - FBT

Factorization Bradley-Terry (FBT) model (Xiao 2016)
Problem with LFR algorithm:

The weights it computes are “just numbers”

e |Larger weights are better, but...

... ho interpretation as probabilities

Harder to use in a program than MM weights

FBT adds interaction terms in a probabilistic model
Achieves better move prediction than MM and LFR

41



Limits of Learning from Game Records

e First main limit:

® Can only learn what is in the data

* New situation may require different moves not seen before
e Second main limit:

® Can only learn what can be represented in our model

® Simple features cannot represent high-level concepts

* Neural nets are much more powerful
* Important question for any learning algorithm:

* How well can it pick up the knowledge that is “hidden” in the
data and transfer it into a learned model?
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Move Prediction - What to Expect?

Prediction of master moves in Go

What is a good prediction score?

Random prediction on 19 x 19: under 0.5%

Simple features and algorithms (Go4, MM): maybe 20%
Better features and algorithms (Fuego, FBT): 30-40%
Human amateur master players: 40-50%

AlphaGo neural net: 57%

Professional human players: similar to AlphaGo?
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Strong Move Prediction vs Playing Well

A better move predictor does not necessarily make a better
player
Most Go games have some very specific, complex tactics

® Often not covered by general learned knowledge

Playing moves that are good “on average” may fail in such
situations

Need precise “reading” (lookahead, search)
Move prediction can help focus the search
It cannot find all good moves by itself

This is still very much true in AlphaGo
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Limits of Move Prediction

e Can never reach 100% prediction
¢ Two main reasons

* Multiple equally good moves
e Different definitions of “best” move

45



Equally Good Moves

e Reasons why moves are equally good:
Symmetry, e.g. in opening
Same point value in endgame

® Example: there may be five 2-point moves in the endgame

® No reason to prefer one over the other

® Even a perfect player has only a 20% chance in move
prediction

e Forcing moves:

® Opponent must answer such moves

® Can often be played at different times without changing the
result

* Hard to predict when exactly a master will play it

Moves may have different strong and weak features which
balance each other

® Choice is “matter of taste”, playing style
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Different Definitions of “Best” Move

| think | am winning. What is the best move?

In theory, any move which preserves a win (follows a
winning strategy) is equally good

In practice, neither me nor my opponent are perfect players

One answer: maximize my probability of winning
What does it mean? It depends on modeling myself and
my opponent
e Example: in TicTacToe, simulation player was better than
perfect player against random opponent
I think I'm losing. How do | best trick the opponent into a
mistake?
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Summary

Discussed learning with simple features

e Coulom’s approach:

Generalized Bradley-Terry model for strength of moves
MM algorithm for learning weights

e Use as in-tree knowledge or as simulation policy
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Using Knowledge in UCT

Regular UCT: select best child by UCT formula
UCT value of move i from parent p:

|
UCT(i) = pii + Cy| 28

i

This uses only information from simulations
® Empirical winrate fi;, number of simulations n;, number of
simulations for parent n,
¢ We can improve move selection by using
learned knowledge
® Examples: simple features, neural networks

Idea: give good moves a bonus before simulations start
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How to Use Knowledge

Three ways:
1. Initialization of node statistics
2. Additive knowledge term
3. Multiplicative knowledge term
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Decay Knowledge over Time

¢ At the beginning, we have only few simulations

* Win rate ji; is very noisy

* Knowledge may be more reliable, can help to guide search
e Later, we may have many simulations for a node

* We should trust them more now

¢ All knowledge is heuristic, may be wrong

* Slowly phase out knowledge as more simulations
accumulate
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1. Initialization of Node Statistics

e Normal UCT: count number of simulations and wins
e |nitialize to 0
e For all children i
* Winsw; =0
e Simulations n; =0
e We can initialize with other values to encode knowledge
about moves
® Give good moves some imaginary initial “wins”
® Give bad moves some imaginary initial “losses”
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1. Initialization of Node Statistics (2)

e How to initialize n; and w; ?

e Size of n; expresses how reliable the knowledge is

e Winrate w;/n; expresses how good or bad the move is,
according to the knowledge

¢ Original work by Gelly and Silver (2007): knowledge worth
up to 50 simulations

® Fuego program: simple feature knowledge converted into
winrate/simulations

e Decay over time: yes

® Qver time, real simulation statistics dominate over
initialization
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2. Additive Knowledge

Idea: add a term to UCT formula

UCT (i) = pi; + knowledgeValue(i) + C o
1

knowledgeValue (1) computed e.g. from simple
features or neural network
Must scale it relative to other terms by tuning

® Too small: little influence on search

* Too big: too greedy, ignores winrate
Decay over time: must be explicitly programmed
Multiply knowledge term by some decay factor

e Examples: 1/n;, 1/(nj +1), \/1/n;,...

log np

54



3. Multiplicative Knowledge, Probabilistic UCT
(PUCT)

Idea: explore promising moves more
Knowledge used:
® Probability p; that move i is best

Multiply exploration term by p;

|
PUCT (i) = pii + pi % Cy /%ﬁ"
]

e Decay over time: yes
® Divide by n; in the exploration term

Exploration term smaller than before, because p; < 1
* May need to balance by increasing C

AlphaGo: exploration term p; x C/(n; + 1)
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Summary of Knowledge in UCT

Knowledge can be used in an in-tree selection formula

Independent from using knowledge during the simulation
phase

Can be (much) slower, used only in tree nodes, not in each
simulation step

Different approaches have been tried successfully

1. Initialization of node statistics by knowledge
2. Additive term
3. Multiplicative term, PUCT
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