
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca

Part IV

Machine Learning for Heuristic
Search

2

455 Today - Lecture 17

• Machine Learning - Introduction of Concepts
• Types of learning
• Problems in machine learning
• Learning for games
• Coursework: Finish Assignment 3, due Nov 15
• Uploads:

• Go4 code - simulation-based player with probabilistic
simulations

• Go5 code - MCTS-based Go player

3

Go4

• Simulation-based player
• 1-ply search + simulations as in Go3

• Probabilistic simulation policy,
similar to Lecture 14 and Coulom’s paper
• It works but is very slow
• Experiment: empty 5× 5 board, default settings, genmove

• Go3, almost-random simulations: 1.8 seconds
• Go3, rule-based simulations: 9.9 seconds
• Go4, probabilistic simulations: 50 seconds

4

Go5

• MCTS-based Go player
• Options similar to Go4, see Go5.py

• MCTS implementation in Go5/mcts.py

5

Grad School!

Department of Computing Science
Equity, Diversity, and Inclusion CommitteeHosted by

ualberta.ca/computing-science/about-the-department/edi.html

DEMYSTIFYINGDEMYSTIFYING
GRAD SCHOOLGRAD SCHOOL

WHAT EXACTLY
IS RESEARCH?

Virtual Workshop
November 17 5-7pm

Open to all undergrad students!
RSVP today by scanning the code!

bit.ly/cs-gradschool-ws

HOW DO I APPLY
TO GRAD SCHOOL?

ALL YOUR GRAD
SCHOOL QUESTIONS

ANSWERED HERE!

IS GRAD SCHOOL
RIGHT FOR ME?

6

Machine Learning for Heuristic Search -
Introduction

• Main Concepts of machine learning (ML)
• Use of ML in heuristic search
• Learning as function approximation
• Overfitting problem
• Example: linear regression and least squares
• Representation and models for ML

7

What is Machine Learning?

• Wikipedia: Give computers the ability to learn without
being explicitly programmed.
• Domingos article: Algorithms that figure out how to

perform important tasks by generalizing from examples.
• Amii: Machine learning enables a computer system to

independently learn from, and continuously adapt to, data
without being explicitly programmed for that data.

8

Examples of Machine Learning Applications

• Ad placement on web pages
• Spam filters for email
• High-frequency trading
• Image, speech and text recognition
• Robotics
• Games
• Thousands of other applications, increasing rapidly

9

Which Kinds of ML are Most Useful for Heuristic
Search?

• Learn an evaluation function
• Learn a move generation policy
• Learn search control for the tree search

• Which parts of a tree to search (first)?
• Learn a filter - which moves to cut
• Learn time control

• How much time to use on each move?
• Spend more time on more important decisions

10

Simplest Learning - Remembering Facts

• Rote learning in humans: remember facts
• Not an issue in computers - databases can store massive

amounts of facts
• This is (mostly) a solved problem
• Cache and re-use results of previous computations

11

Remembering Facts - Examples in Heuristic
Search and Learning

• Transposition table
• Compute and store winning strategy for whole game, then

follow it
• Endgame database, as in checkers

• Tabular learning - simple kind of reinforcement learning
• Learn a table of all states and their expected reward

12

Learning as Function Approximation and
Generalisation

Large, complex problems: cannot learn all the facts
• What can we learn?
• Learn abstract concepts
• Learn general knowledge from (many) examples
• Find interesting trends, correlations in your data
• Learn evaluation function
• Predict moves in the game of Go

13

Supervised, Unsupervised, and Reinforcement
Learning

• Supervised: learn from labeled training data - labeled with
the correct result
• Example: learn from master moves in game records. Label

of position = move played by the master
• Unsupervised: unlabeled training data

• Example: clustering, dimension reduction, feature
extraction

• Reinforcement: interact with the environment, then learn
from rewards
• Example: learn from playing games.

Reward = win/loss at the end of the game
• Semi-supervised learning:

• Some (often small) amount of labeled data
• Some (large) amount of unlabeled data

14

Learning with a Model vs Learning from
Experience

• Learning with a Model: allows us to try out actions and
observe results in simulator
• Learning from Experience: real world, learn from

observations of the effects of real actions
• Simulator: learn from simulated experience from

experiments within the simulator
• Most domains:

• Must worry about the error from modelling
• Garbage in - garbage out

15

Learning with a Model in Games

• In games we have fast and perfect simulators -
• Truthful: exact implementation of rules and actions
• Fast, efficient
• Cheap, can repeat as often as needed
• Games are ideal test beds for learning
• Used for much groundbreaking work on learning

16

Input, Output, and Representation

• Key questions before we start a machine learning task:
• What is the input? How is it represented?
• What is the output? How is it represented?
• What is learned? How is that represented?
• We get to choose representations.
• Good choices can make a huge difference in the results

17

Learn a Function from Data

• Given training examples: data points (xi , yi)

• Learn a function y = f (x)
• Goal: approximate the data as well as possible
• Use function for prediction:

• Given a new x-value
• What should the y-value be?

Image source: http://stackoverflow.com/

questions/1565115/

Goals:
• Good approximation
• Robust against noisy data
• Avoid overfitting

18

http://stackoverflow.com/questions/1565115/
http://stackoverflow.com/questions/1565115/

Training Data vs Test Data

• Training data
• Data used for the machine learning process

• Test data
• Data used to evaluate the quality of the learned function

• Training data and test data should be independent
samples from the same learning problem
• One rule of thumb:

split data into 90% training, 10% test
• Example: given 100,000 master-level Go games:

• Use 90,000 games for training
• 10,000 games for test

19

Overfitting

Image source: https://en.wikipedia.org/wiki/Overfitting

• Problem: learning the noise as well as the data
• If you fit the noisy data too closely,

it will not generalize well to new data
• Example: fit exact polynomial through noisy data points
• Depending on the noise level in the data,

a simple linear function may be better

• Opposite problem: underfitting - cannot see the regularity
in the data from the learned function

20

https://en.wikipedia.org/wiki/Overfitting

More Overfitting

Image source: https://en.wikipedia.org/wiki/Overfitting

• Complicated green line:
separates red from blue data points exactly
• What if there is some noise in the data?

The green line overfits to the outlier data points
• Likely the simpler black line is the better separator
• More examples in the Domingos paper

21

https://en.wikipedia.org/wiki/Overfitting

Error from Overfitting

Image source: https://en.wikipedia.org/wiki/Overfitting

• x-axis = training time
y-axis = error of the learned function
• Blue line: error on training data
• Red line: error on test data
• In the beginning, learning from training data works well on

the test data
• At some point, it begins to overfit to the training data
• The generalization performance on the test data becomes

worse

22

https://en.wikipedia.org/wiki/Overfitting

Linear Regression

Image source:

https://en.wikipedia.org/wiki/

https://en.wikipedia.org/wiki/

Regression_analysis

• Find best linear function
y = ax + b to approximate the
data
• Only two parameters a,b to

optimize
• Standard approach to solve:

least squares

23

https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/Regression_analysis

Least Squares

• Given data points (xi , yi)

• Find a linear function y = ax + b which approximates the
data as well as possible
• Error for point i = difference between yi and axi + b
• |yi − (axi + b)|
• Difficult to optimize with absolute values, so squared error

is much more popular
• Find a,b which minimize

∑
i(yi − (axi + b))2

24

Least Squares (2)

• Find a,b which minimize
∑

i(yi − (axi + b))2

• Closed-form solution using simple calculus
• Best values for a and b computed as functions of {(xi , yi)}i

• Many python sample codes on the net, e.g.
http://machinelearningmastery.com/
implement-simple-linear-regression-scratch-python/

• Details: https://en.wikipedia.org/wiki/Simple_
linear_regression

25

http://machinelearningmastery.com/implement-simple-linear-regression-scratch-python/
http://machinelearningmastery.com/implement-simple-linear-regression-scratch-python/
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Simple_linear_regression

Generalizations

• Linear regression is the most basic model
• Many more general statistical models exist
• Fit nonlinear functions, e.g. polynomials
• Linear functions of more than one variable

• Examples in next class
• Nonlinear functions of more than one variable

• Example: neural networks
• Minimize error functions other than least squares

26

Example for Different Error Function

• Move prediction problem in Go
• Learning task: Learn a value for how good each move is
• Pick the move with highest value
• We do not care about the function itself
• We only care about the move ordering it produces
• We do not directly have a target function to approximate
• Just count the number of correctly predicted moves
• Evaluate the set of function values of all legal moves:

• Value 1 if master move has highest evaluation among all
moves, 0 otherwise

• This is a classifier as discussed in Domingos’ article
• “is best move” vs “is not best move”

27

Representation and Models for Machine
Learning

Main questions:
• How is the input represented?
• How is the learned model represented?
• What is the format of the output?

28

Representation of the Input

• Raw input
• Location of stones on the board, or sequence of moves

• Features which represent (hopefully) useful concepts that
will facilitate learning
• Go examples: selfatari, liberties, proximity to last move,

local pattern
• Simplest case: binary features, only two values 0 (off, false)

and 1 (on, true)
• Popular for learning in heuristic search:

• Machine-learned weights
• Hand-designed features
• Example: Coulom’s MM

29

Representation of the Model

• What kind of functions are we trying to learn?
• It is our choice, we can use some general principles
• Principle 1: simple is good - helps avoid overfitting
• Principle 2: as complex as needed to represent what we

need
• Example: Linear functions are not enough to give a good

evaluation for Go
• Principle 3: functions which represent general

assumptions about our world
• See detailed discussion in Domingos’ paper

• Principle 4: functions for which we have efficient learning
algorithms
• Choice is closely tied to choice of input representation

30

Examples of Models

• Linear model
• Features fi given as input
• Learn weights wi
• Evaluation:

∑
i wi fi

• Neural network
• Simple features or raw data as input
• (Many) layers of neurons and nonlinear activation functions
• Weights represent strength of connection between neurons

31

Developing the Model

In practice, we do (many) iterations of:
• Create data
• Develop model
• Use machine learning to learn weights
• Evaluate model
• Find problems or weaknesses with data and/or model
• Repeat

32

Output of Learning Process

Result of learning in games:
• Classifiers: good/bad move, filter/don’t filter for search,...
• Move evaluation or move probabilities
• State, position evaluation
• Local evaluation, e.g. territory maps

• How likely is point p going to be Black/White/neutral?

33

Summary

• Introduced some basic concepts and examples of machine
learning
• Focus on games
• Touched upon how to apply learning to Go
• Next:

• Machine learning with simple features in Go
• First algorithms for learning

34

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search
	Machine Learning for Heuristic Search

