
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca


455 Today - Lecture 16

• Today: Selective search and Monte Carlo Tree Search
(MCTS)

• Finish discussion of UCB from Lecture 15
• Comparison and overview:

Exact search
Selective search
Simulations

• Monte Carlo Tree Search framework
• UCT algorithm
• Enhancements of MCTS

2



Coursework

• Work on Assignment 3
• Reading: Pedro Domingos, A Few Useful Things to Know

about Machine Learning
• Quiz 9 Monte Carlo Tree Search. Double length
• Activities

3



Exact Search, Selective Search, and
Simulations

• Big-picture overview of algorithms so far
• For each method, focus on three questions:

1. Which parts of the game tree does it visit?
2. How does it back-up results to the root of the tree?
3. Exact or selective?

4



Review - (b,d) Tree Model and Solving a Game

• Search space in (b,d) tree model:
• Branching factor b, depth d
• Alternating min and max levels in tree
• bd leaf nodes
• (bd+1 − 1)/(b − 1) ≈ (b ∗ bd )/(b − 1) ≈ bd nodes

in whole tree
• Size of proof tree in best case: very roughly bd/2

• Minimum amount of search to solve a game

5



Naive Minimax (or Negamax) - Exact Solver

1. Which parts of the game tree does it visit?
• Explores the full game tree
• All children searched in each node

2. How does it back-up results to the root of the tree?
• Minimax:

Minimum over children at min nodes,
maximum at max nodes

• Negamax is a different but equivalent formulation, same
result

3. Exact or selective?
• Exact
• Terminal nodes are true end-of-game
• Uses only exact scores at terminal nodes for evaluation
• Result is proven correct

6



Naive Minimax - Exact Solver

7



Efficient Minimax (or Negamax) - Boolean
Minimax, Alphabeta

1. Which parts of the game tree does it visit?
• Some parts of tree may be cut by exact pruning rules
• Best case: Visit only 1 child for winner
• Needs to try all moves for loser

2. How does it back-up results to the root of the tree?
• Minimax
• For alphabeta, some back-up values are “good-enough”

upper or lower bounds, not exact values
3. Exact or selective?

• Exact.

8



Efficient Minimax (or Negamax) - Boolean
Minimax, Alphabeta

9



Depth-limited Alphabeta Search

1. Which parts of the game tree does it visit?
• As in alphabeta, but only up to depth limit

2. How does it back-up results to the root of the tree?
• Min and max

3. Exact or selective?
• Selective
• Heuristic evaluation at terminal nodes
• Search process is exact, but evaluation of leaves is not
• Source of error: heuristic evaluation in leaf nodes

10



Depth-limited Alphabeta Search

11



Selective Alphabeta Search with Fixed Time or
Node Budget

• For many games even O(bd/2) nodes for best-case proof
is far too large

• In practice: fixed time or node limit for the search
(e.g. 30 seconds, or 1012 nodes)

• What can we search within that budget?
• First answer was depth-limited search:

reduce d until search fits within budget
• New: Second answer - selective search:

reduce both b and d until search fits within budget

12



Selective Alphabeta Search - Methods

• How to do selective search?
• Search “interesting” moves much deeper than others
• Choice 1: Prune moves by using selective minimax

algorithms such as ProbCut (Buro) or Nullmove pruning
• Choice 2: Prune moves using knowledge

• Details: https:
//www.chessprogramming.org/Selectivity

• Choice 3: expand search tree selectively
• Example: Monte Carlo Tree Search (MCTS)

13

https://www.chessprogramming.org/Selectivity
https://www.chessprogramming.org/Selectivity


Selective Alphabeta Search

1. Which parts of the game tree does it visit?
• Does not consider all legal moves in each node
• Often depth-limited as well

2. How does it back-up results to the root of the tree?
• Min and max

3. Exact or selective?
• Selective
• Heuristic evaluation at terminal nodes
• Skips some legal moves
• Source of error: heuristic evaluation in leaf nodes
• Source of error: may prune the best move from a node

14



Selective Alphabeta Search

15



Selective Alphabeta Search for Large Problems

• Large problems (chess, checkers, ...)
• Reducing b not enough
• Reduce both b and d - selective search with heuristic

evaluation
• Before Monte Carlo, this was the standard approach

for most complex games

16



Selective Alphabeta Search for Go?

How about Go?
• > 200 moves on average for 19x19 Go
• Usually, only 1-10 of them are good
• Can we reduce b down to this range,

without missing important good moves?
• Many attempts failed in the past -

too many good moves missed
• MCTS was the first approach that worked well
• Later, strong move selection heuristics based on neural

nets also helped a lot
• Neural nets were not tried much with alphabeta,

since MCTS worked so well in Go

17



Simulation-based Players

• Review: simple
simulation-based players (e.g.
Go3)

• 1 ply search at the root
• Move selection - simple or UCB
• Simulations - (almost) random,

rule-based, or probabilistic
• How do these algorithms

compare to selective search?

18



Simulation-Based Player as Selective Minimax
Search

• Extreme case of selective search:
• Simulation-based player with one simulation per move
• Branching factor b at root, complete search
• Branching factor 1 at all later levels...

19



Simulation-Based Player with Repeated
Sampling

Repeated sampling in Simulation Player
• With small number of samples

• Samples a few moves close to the start
• does not improve the branching factor lower in the tree

• With large, unlimited number of samples
• Eventually samples all nodes in the full (b,d) tree infinitely

often
• With selective policy (e.g. patterns, filters),

samples some subtree infinitely often

20



Simulation-based Player - Uniform Random
Simulation Policy

21



Simulation-based Player - Uniform Random
Simulation Policy

1. Which parts of the game tree does it visit?
• Eventually, visits all nodes

2. How does it back-up results to the root of the tree?
• Max at root only
• Average over all simulations

3. Exact or selective?
• Selective
• Not exact because of averaging instead of minimax
• Source of error/risk: bias - average may be far from min,

max
• Source of error: variance - large uncertainty with small

number of samples

22



Simulation-based Player - Non-Uniform
Simulation Policy

1. Which parts of the game tree does it visit?
• All, except subtree below moves that are never selected by

policy
2. How does it back-up results to the root of the tree?

• Same as Uniform Random: 1-ply max + average over
simulations

3. Exact or selective?
• Selective
• Similar to Uniform Random
• Strength: average over better samples may be closer to

min, max
• Risk: can miss totally by hard-pruning all good moves

23



Simulation-based Player - Non-Uniform
Simulation Policy

• Some nodes in tree may never be sampled:
• If some move on path to node never selected by policy

24



Simulation-based Player - Simple vs UCB Move
Selection

• Move selection:
both simple and UCB behave the same in principle

• Both compute average over all simulations
• Difference: in UCB, average is taken:

• Over more simulations for good move
• Over fewer simulations for bad move
• With a tree, in MCTS with UCT, this will be important

• Another difference:
• UCB selects most-simulated move (Why?)
• Simple selects move with highest winrate
• These moves are usually, but not always the same

25



Monte Carlo Tree Search (MCTS)

Next algorithm: Monte Carlo Tree Search (MCTS)
1. Which parts of the game tree does it visit?

• Tree search at the start, simulations to finish
2. How does it back-up results to the root of the tree?

• Weighted averages over children
• Weight of child = number of simulations for that child
• Approaches min, max if best child has much higher weight

than rest
3. Exact or selective?

• Selective
• Much deeper search for moves with better winrates
• Converges to exact if given enough time to grow whole tree
• Weighted average

26



Monte Carlo Tree Search

27



Monte Carlo Tree Search

• Weakness of simulation-based players so far:
• No tree search after move 1
• Everything from move 2 is random(ized) simulations only

MCTS + UCT approach
• Add selective tree search
• Adapt UCB idea to work in trees - UCT algorithm
• UCT = Upper Confidence bounds on Trees
• Run simulation from leaf of tree for evaluation

28



Adding a Game Tree
to Simulation-Based Player

• First idea: combine what we have:
• Depth-limited alphabeta
• Evaluation by simulation

• This fails miserably.
• Too noisy - need many simulations to get reasonably stable

evaluation
• Too slow - even 1-ply simulation-based player is slow
• Result: Simulation-based approaches were ignored for over

10 years in Go
• Smarter way to combine search and simulation

• MCTS, UCT

29



Monte Carlo Tree Search(MCTS) Model

Image source: Browne et al, A Survey of Monte Carlo Tree Search Methods

Four steps, repeated many times

• Selection - traverse existing tree using formula such as UCT to
select a child in each node

• Expansion: add node(s) to tree

• Simulation: follow randomized policy to end of game

• Backpropagation: update winrates along path to root

30



Using MCTS to Play Games

• To play one move:
• Run MCTS search from current state
• After search: select best move at root, play it

• To play a whole game:
• Run MCTS every time it is the program’s turn
• May store and re-use parts of tree from previous search

31



Monte Carlo Tree Search(MCTS) Model

Image source: Browne et al, A Survey of Monte Carlo Tree Search Methods

• vl = leaf node in tree
• ∆ = result of simulation
• a(..) = action to move to best child

32



Monte Carlo Tree Search Example

Image source: David Silver

33



Monte Carlo Tree Search Example

Image source: David Silver

34



Monte Carlo Tree Search Example

Image source: David Silver

35



Monte Carlo Tree Search Example

Image source: David Silver

36



Monte Carlo Tree Search Example

Image source: David Silver

37



MCTS Tree Traversal

• Start from root of tree
• Repeat:

• Go to best child
• Until reached leaf node in tree

• What is the best child?
• Use a formula to evaluate all children

• UCT is popular (see next slides)
• Many other extended formulas are possible

• Example: add knowledge-based term

38



From UCB to UCT

• UCT algorithm by Kocsis and Szepesvari (2006)
• It is still the classic algorithm for Monte Carlo Tree Search
• It is not the first child selection algorithm used in MCTS . . .
• . . . but it is the first based on sound theory
• Worked better in practice than earlier ad hoc algorithms
• Original paper has over 2200 citations -

hugely influential

39



UCT Algorithm Main Ideas

• Algorithm for child selection in Monte Carlo Tree Search
• Name UCT is often used for MCTS with this algorithm
• Combines tree search with simulations
• Uses results of simulations to guide growth of the game

tree
• Uses UCB-like rule to select “best” child of a tree node
• Goal: select a good path in the tree to explore/exploit next
• Grows the tree over time
• Stores winrate statistics in each node, used for child

selections

40



Exploration vs Exploitation

• Like UCB, UCT tries to balance
Exploration and Exploitation

• Exploitation: focus on most promising moves
• Exploration: focus on moves where uncertainty about

evaluation is high
• Difference: evaluate UCT formula in every node along a

path in the search tree

41



From UCB to UCT

• Review - UCB formula

UCB(i) = µ̂i + C

√
log N

ni
. (1)

• UCT is very similar: UCT value of move i from parent p:

UCT (i) = µ̂i + C

√
log np

ni
. (2)

• Only difference in exploration term
• UCB: uses global count of all simulations N
• UCT: uses simulation count of parent np

• For root, UCT is identical to UCB
• N = simulation count of root

42



MCTS Tree Expansion

• How to grow the tree?
• Simplest case: add one node per iteration
• Add one node from current simulation
• Tree grows very selectively

- paths with strong moves become much deeper than
others

• If memory fills too quickly:
• Use an expansion threshold te
• Only add a node if the leaf has at least te visits
• Example: Fuego program, default te = 3

43



MCTS Simulations

• Run one simulation from the leaf node of tree
• Can use any simulation policy

• Uniform random, rule-based, or probabilistic
• Result of simulation is win (1) or loss (0)
• Can run more than one simulation from each leaf node

• Tradeoff between speed and accuracy
• Tradeoff between time spent in updating tree vs running

simulations
• Example: for Fuego, on some hardware 2 simulations per

leaf works better than 1

44



MCTS Backpropagation - Update Statistics

• Update wins and visit counts along path to root
• Negamax style implementation - flip wins/losses at each

step
• value = 1-value changes from wins to losses and back

def backprop(node, value):
while node:

node._wins += value
node._n_visits += 1
value = 1 - value
node = node._parent

45



MCTS Move Selection

• Run as many iterations of MCTS as you can
• Then select move to play at root
• How?
• Browne’s paper mentions several approaches
• We discuss the main ones

46



MCTS Move Selection

• Max child: child with highest number of wins
• Robust child: Select the most visited root child. (This is

popular)
• Highest winrate

• Not a good/stable method with MCTS
• Why not stable: see next slides

• Max-Robust child (see later slide)

47



Dangers of Selecting Move by Winrate in MCTS

• MCTS usually expands the move with best winrate
(exploitation)

• But sometimes, it explores an inferior-looking move
• This can lead to trouble for selecting a move by best

winrate
• A move with low simulation count and high uncertainty

about its value might get selected
• See example next slide

48



Dangers of Selecting Move by Winrate in MCTS

• Example: two moves A and B
• A 78 wins / 100 visits, winrate 78%
• B 6 wins / 8 visits, current winrate 75%
• Assume B has higher UCT score, so we explore B
• B gets a win, now has 7 wins / 9 visits, current winrate

77.8%
• Explore B again
• B gets another win, now has 8 wins / 10 visits, current

winrate 80%
• Assume we stop search now

49



Dangers of Selecting Move by Winrate in MCTS

• A 78 wins / 100 visits, winrate 78%
• B 8 wins / 10 visits, winrate 80%
• If we select B because of highest winrate:
• High risk of being wrong
• The value of A is much more certain
• The value of B still has much higher variance
• Remember discussion of binomial distribution of

simulations
• Probability of error is high

50



Max-Robust Child: Extending Search

• What if most-simulated move and highest winrate move
are different?

• Search may just have found a new best move
• B is really better than A

• Or B may be a fluke
• B got some “lucky” wins, but is worse than A in the long run

• Very little evidence to decide which is true
• One solution: extend the search in such cases

51



Max-Robust Child: Extending Search

• Extending the search can distinuish two cases:
• If B is really good:

• B will now receive many more simulations soon, stabilize
value

• If B’s recent wins were a fluke:
• Its winrate and upper confidence bound will drop quickly

with more simulations
• Extending search in this way is called “Max-Robust child”

in the paper

52



Improving MCTS

• Many ways to improve:
• Adding knowledge in tree or in simulation
• Modify in-tree selection
• Modify or replace simulations
• We will discuss several good options when we talk about

machine learning and AlphaGo

53



Summary

• Overview of game tree search and simulation
• Discussed Monte Carlo Tree Search
• After all the preparation, MCTS mostly combines

previously discussed concepts
• 4+1 steps of MCTS

• Repeat: select, expand, simulate, backpropagate
• Finally: select move to play

54



Memory-Augmented Monte Carlo Tree Search

• Paper by Chenjun Xiao, Jincheng Mei and Martin Müller
• An improvement of MCTS
• Outstanding paper award at the 2018 AAAI conference
• Here: short, nontechnical summary of the ideas

• Credit: most pictures and some bullet points taken from
Chenjun’s AAAI talk

• Interested in technical details?
• Read the paper on Martin’s publications page
http://webdocs.cs.ualberta.ca/~mmueller/
publications.html

• Look at the technical talk on Martin’s talks page https://
webdocs.cs.ualberta.ca/~mmueller/talks.html

55

http://webdocs.cs.ualberta.ca/~mmueller/publications.html
http://webdocs.cs.ualberta.ca/~mmueller/publications.html
https://webdocs.cs.ualberta.ca/~mmueller/talks.html
https://webdocs.cs.ualberta.ca/~mmueller/talks.html


Main Idea

• Problem of MCTS:
• Most nodes are leaves or

near leaf
• Most nodes have few

simulations
• Evaluation is noisy

• Can we improve it?
• Approach: find similar

states
• Use values of similar

states to improve
evaluation

56



Feature Representation for States

• How to define similar states?
• Represent state as vector of

features
• States are similar if they share

lots of features
• In this paper, features are

defined by
• Using a layer of a neural net
• Using an unbiased hashing

technique to reduce number of
features

57



Memory

• Store for state s:
• Feature vector of s
• Pointer back to s to lookup its

value (wins / visits)
• As we do more search, value

becomes better
• Lookup new state s:

• Compute memory value as
weighted sum of similar states
in memory

58



Finding Similar States in Memory

Image source: https://www.

safaribooksonline.com/library/

view/statistics-for-machine

• Compare two feature vectors
• Similar if they “point in similar

direction”
• Measure: cosine similarity
• A standard similarity measure in

machine learning
• Larger is better, similarity 1 if

they have same direction
• Math: see https:
//en.wikipedia.org/wiki/
Cosine_similarity

59

https://www.safaribooksonline.com/library/view/statistics-for-machine
https://www.safaribooksonline.com/library/view/statistics-for-machine
https://www.safaribooksonline.com/library/view/statistics-for-machine
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity


Using Memory with MCTS

• Selection: compute state value
by linear combination of state
value V̂s and memory value V̂M

V (s) = (1 − λs)V̂s + λsV̂M

• Evaluation: evaluate state by
both Monte Carlo and memory

• Backup: update MC value and
memory value in tree

60



Experiment 1

• Play games Fuego + M-MCTS
against normal Fuego

• Vary neighbourhood size M
• τ is a “temperature” parameter

in the algorithm
• X-axis: number of

simulations/move
• Y-axis: winrate against Fuego

61



Experiment 2

• Varying Memory Size
• Keep neighborhood size M and
τ constant

62



Summary of M-MCTS

• MCTS has very few samples on
most nodes near the leaves

• We can “interpolate” the value of
similar nodes

• This gives a better evaluation
• Not in this summary (read the

paper...):
• Math. framework and proof that

this gives better values with high
probability

63



RAVE: Rapid Action Value Estimation

• Sylvain Gelly, David Silver, "Monte-Carlo tree search and
rapid action value estimation in computer Go", 2011.

• One of many extension to MCTS
• Originally proposed for Go but can be generalized for other

games
• Works especially well for NoGo

64



Main Idea: All Moves as First (AMAF)

• All moves as first is a heuristic that is useful for games that
can be decomposed into independent subgames

• Each move has its own value (as opposed to each move at
a specific position having its own value)

• The value for a move in one subgame is not affected by
moves in other subgames

• The subgames can be played in any order
• You can treat all moves played in a trajectory as if it is the

first move

65



RAVE Example

66



Terminology

• µ̂i = wi/ni is the win rate or MC value of the move i
• µ̃i = w̃i/ñi is the AMAF heuristic value of the move i

• ñi is incremented each time i is played in any trajectory
within the same subtree

• w̃i is incremented each time a win is the result of i being
played in any trajectory within the same subtree

67



The RAVE Algorithm

• If you use the
AMAF heuristic
instead of the MC
value of each
node in your
search tree, you
get RAVE

68



RAVE Properties

• RAVE is similar to the history heuristic in alpha-beta
search

• History heuristic is a dynamic heuristic that keeps track of
which moves cause the most beta-cuts and tries them first

• RAVE also keeps track of which moves are most successful
at different depths of the search

• RAVE gets more samples for each move i
• Everytime i is played in the same subtree, it counts as if it is

sampled once
• You end up with many more samples of i , so it learns faster
• This can actually be bad, because the same move played

at different times can mean very different things

69



The MC-RAVE Algorithm

• If you combine the MC value with the AMAF heuristic, you
get the MC-RAVE algorithm

µi = (1 − β)µ̂i + βµ̃i . (3)

• β is a scheduling parameter that gives more or less
emphasis to the two evaluations µ̂ (MC value) and µ̃
(AMAF)

• The general rule of thumb is to make β dynamic
• Have β decay as the number of samples increase
• In other words, use RAVE because it is useful but

inaccurate, then transition over to the more accurate MC
value as the number of samples increase

70



The UCT-RAVE Algorithm

• Lastly, you combine MC-RAVE (an evaluation scheme)
with the UCT

UCT (i) = µi + C

√
log np

ni
. (4)

• You can initialize the values with knowledge
• For µ̂i , µ̃i , 0.5 is a good reference
• For ni , you can set to 0
• For ñi , you can set to 20 or 40

71



The Scheduling Constant β

• The β value is set to the following

β =

√
k

3np + k
(5)

• For β = 1/2, i.e. the point at which the MC value and the
AMAF value has equal weighting, we can see that k = np

• If we set k = 100, that means after p is sampled 100 times,
MC and AMAF values are given equal weighting

• It is a heuristic that has been shown to be effective for Go
and NoGo

• The original paper includes another scheduling method for
β which has a stronger mathematical basis

72



UCT vs. MC-RAVE

73


	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search

