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455 Today - Lecture 16

e Today: Selective search and Monte Carlo Tree Search
(MCTS)

e Finish discussion of UCB from Lecture 15

e Comparison and overview:

Exact search

Selective search

Simulations
e Monte Carlo Tree Search framework
e UCT algorithm

e Enhancements of MCTS



Coursework

Work on Assignment 3

Reading: Pedro Domingos, A Few Useful Things to Know
about Machine Learning

Quiz 9 Monte Carlo Tree Search. Double length
Activities



Exact Search, Selective Search, and
Simulations

¢ Big-picture overview of algorithms so far
¢ For each method, focus on three questions:

1. Which parts of the game tree does it visit?
2. How does it back-up results to the root of the tree?
3. Exact or selective?



Review - (b,d) Tree Model and Solving a Game

Search space in (b,d) tree model:

Branching factor b, depth d

e Alternating min and max levels in tree

bY leaf nodes

(b9 —1)/(b—1) =~ (b b?)/(b— 1) ~ b9 nodes
in whole tree

Size of proof tree in best case: very roughly b?/2

Minimum amount of search to solve a game



Naive Minimax (or Negamax) - Exact Solver

1. Which parts of the game tree does it visit?

® Explores the full game tree
¢ All children searched in each node
2. How does it back-up results to the root of the tree?

® Minimax:
Minimum over children at min nodes,
maximum at max nodes

* Negamax is a different but equivalent formulation, same
result

3. Exact or selective?
® Exact
Terminal nodes are true end-of-game
Uses only exact scores at terminal nodes for evaluation
Result is proven correct



Naive Minimax - Exact Solver

Current state, max node

Legal Moves
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Efficient Minimax (or Negamax) - Boolean
Minimax, Alphabeta

1. Which parts of the game tree does it visit?
® Some parts of tree may be cut by exact pruning rules
® Best case: Visit only 1 child for winner
® Needs to try all moves for loser
2. How does it back-up results to the root of the tree?
® Minimax
* For alphabeta, some back-up values are “good-enough”
upper or lower bounds, not exact values
3. Exact or selective?
® Exact.



Efficient Minimax (or Negamax) - Boolean
Minimax, Alphabeta

Best case:
Search
proof tree




Depth-limited Alphabeta Search

1. Which parts of the game tree does it visit?
* As in alphabeta, but only up to depth limit

2. How does it back-up results to the root of the tree?
® Min and max

3. Exact or selective?

® Selective

Heuristic evaluation at terminal nodes

Search process is exact, but evaluation of leaves is not
Source of error: heuristic evaluation in leaf nodes



Depth-limited Alphabeta Search

depth limit
heuristic
evaluation here




Selective Alphabeta Search with Fixed Time or
Node Budget

* For many games even O(b??) nodes for best-case proof
is far too large

¢ In practice: fixed time or node limit for the search
(e.g. 30 seconds, or 102 nodes)

e What can we search within that budget?

¢ First answer was depth-limited search:
reduce d until search fits within budget

e New: Second answer - selective search:
reduce both b and d until search fits within budget



Selective Alphabeta Search - Methods

How to do selective search?
Search “interesting” moves much deeper than others

Choice 1: Prune moves by using selective minimax
algorithms such as ProbCut (Buro) or Nullmove pruning
Choice 2: Prune moves using knowledge
® Details: https:
//www.chessprogramming.org/Selectivity
Choice 3: expand search tree selectively
® Example: Monte Carlo Tree Search (MCTS)


https://www.chessprogramming.org/Selectivity
https://www.chessprogramming.org/Selectivity

Selective Alphabeta Search

1. Which parts of the game tree does it visit?
® Does not consider all legal moves in each node
¢ Often depth-limited as well

2. How does it back-up results to the root of the tree?
* Min and max

3. Exact or selective?

® Selective

Heuristic evaluation at terminal nodes

Skips some legal moves

Source of error: heuristic evaluation in leaf nodes
Source of error: may prune the best move from a node



Selective Alphabeta Search

Selected Moves
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Selective Alphabeta Search for Large Problems

Large problems (chess, checkers, ...)

Reducing b not enough

Reduce both b and d - selective search with heuristic
evaluation

Before Monte Carlo, this was the standard approach
for most complex games



Selective Alphabeta Search for Go?

How about Go?

> 200 moves on average for 19x19 Go
Usually, only 1-10 of them are good

Can we reduce b down to this range,

without missing important good moves?
Many attempts failed in the past -

too many good moves missed

MCTS was the first approach that worked well

Later, strong move selection heuristics based on neural
nets also helped a lot
* Neural nets were not tried much with alphabeta,
since MCTS worked so well in Go



Simulation-based Players

® Review: simple

simulation-based players (e.g.
Go3)
¢ 1 ply search at the root
oJeXoXoloRe} Py

* Move selection - simple or UCB
Simulations - (almost) random,
rule-based, or probabilistic

* How do these algorithms
compare to selective search?

0110 1110 1001 0010 0101 0110



Simulation-Based Player as Selective Minimax
Search

[ ) root - maximize

N\

() () ) () ) () Average outcomes

Random Simulation
1 sample from tree

1 1 1 0ot o Qutcomes
of simulations

Extreme case of selective search:

Simulation-based player with one simulation per move
Branching factor b at root, complete search

Branching factor 1 at all later levels...



Simulation-Based Player with Repeated
Sampling

Repeated sampling in Simulation Player
e With small number of samples
e Samples a few moves close to the start
® does not improve the branching factor lower in the tree
e With large, unlimited number of samples
* Eventually samples all nodes in the full (b,d) tree infinitely

often
* With selective policy (e.g. patterns, filters),
samples some subtree infinitely often

20



Simulation-based Player - Uniform Random
Simulation Policy

Current state

Legal Moves

O Average outcomes

Random Simulations
sample from tree
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of simulations
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Simulation-based Player - Uniform Random
Simulation Policy

1. Which parts of the game tree does it visit?

Eventually, visits all nodes

2. How does it back-up results to the root of the tree?

Max at root only
Average over all simulations

3. Exact or selective?

Selective

Not exact because of averaging instead of minimax
Source of error/risk: bias - average may be far from min,
max

Source of error: variance - large uncertainty with small
number of samples

22



Simulation-based Player - Non-Uniform
Simulation Policy

1. Which parts of the game tree does it visit?
* All, except subtree below moves that are never selected by
policy
2. How does it back-up results to the root of the tree?

® Same as Uniform Random: 1-ply max + average over

simulations
3. Exact or selective?

® Selective

e Similar to Uniform Random

e Strength: average over better samples may be closer to
min, max

® Risk: can miss totally by hard-pruning all good moves
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Simulation-based Player - Non-Uniform
Simulation Policy

Simulations
following policy

0110 1110 1001 0010 0101 0110

e Some nodes in tree may never be sampled:
¢ |f some move on path to node never selected by policy

24



Simulation-based Player - Simple vs UCB Move
Selection

Move selection:
both simple and UCB behave the same in principle

Both compute average over all simulations

Difference: in UCB, average is taken:

® Over more simulations for good move
® Over fewer simulations for bad move
® With a tree, in MCTS with UCT, this will be important

Another difference:

® UCB selects most-simulated move (Why?)
® Simple selects move with highest winrate
* These moves are usually, but not always the same
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Monte Carlo Tree Search (MCTS)

Next algorithm: Monte Carlo Tree Search (MCTS)
1. Which parts of the game tree does it visit?
* Tree search at the start, simulations to finish
2. How does it back-up results to the root of the tree?

* Weighted averages over children

* Weight of child = number of simulations for that child

® Approaches min, max if best child has much higher weight

than rest

3. Exact or selective?
Selective
Much deeper search for moves with better winrates
Converges to exact if given enough time to grow whole tree
Weighted average

26



Monte Carlo Tree Search




Monte Carlo Tree Search

* Weakness of simulation-based players so far:
* No tree search after move 1
e Everything from move 2 is random(ized) simulations only

MCTS + UCT approach

¢ Add selective tree search
Adapt UCB idea to work in trees - UCT algorithm
UCT = Upper Confidence bounds on Trees

e Run simulation from leaf of tree for evaluation

28



Adding a Game Tree
to Simulation-Based Player

¢ Firstidea: combine what we have:
® Depth-limited alphabeta
® Evaluation by simulation
¢ This fails miserably.
* Too noisy - need many simulations to get reasonably stable
evaluation
® Too slow - even 1-ply simulation-based player is slow
® Result: Simulation-based approaches were ignored for over
10 years in Go
e Smarter way to combine search and simulation
e MCTS, UCT

29



Monte Carlo Tree Search(MCTS) Model

Selecton — Expansion — Simulation —> Backpropagation
Dej faulr
Pollcy Policy
v
A

Fig. 2. One iteration of the general MCTS approach.

Image source: Browne et al, A Survey of Monte Carlo Tree Search Methods

Four steps, repeated many times

e Selection - traverse existing tree using formula such as UCT to

select a child in each node
e Expansion: add node(s) to tree
e Simulation: follow randomized policy to end of game

® Backpropagation: update winrates along path to root
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Using MCTS to Play Games

e To play one move:

® Run MCTS search from current state
® After search: select best move at root, play it

¢ To play a whole game:

® Run MCTS every time it is the program’s turn
* May store and re-use parts of tree from previous search
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Monte Carlo Tree Search(MCTS) Model

Algorithm 1 General MCTS approach.

function MCTSSEARCH(sg)
create root node vy with state sg
while within computational budget do
v  TREEPOLICY (vp)
A < DEFAULTPOLICY(s(v;))
BACKUP(v;, A)

return a(BESTCHILD(v))

Image source: Browne et al, A Survey of Monte Carlo Tree Search Methods
® v, = leaf node in tree
e A = result of simulation
® 3(..) = action to move to best child
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Monte Carlo Tree Search Example

Current state —>t : Tree Policy
&

Default Policy

Image source: David Silver
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Monte Carlo Tree Search Example

Current state —»
Tree Policy

Default Policy

Image source: David Silver
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Monte Carlo Tree Search Example

Current state —» £ A
* ® v Tree Policy
A
Default Policy
Y

Image source: David Silver
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Monte Carlo Tree Search Example

Current state — &&

Tree Policy

Default Policy

Image source: David Silver
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Monte Carlo Tree Search Example

Current state —» €&

Tree Policy

Default Policy

Image source: David Silver
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MCTS Tree Traversal

Start from root of tree
Repeat:
* Go to best child
¢ Until reached leaf node in tree
What is the best child?
Use a formula to evaluate all children
e UCT is popular (see next slides)
Many other extended formulas are possible
® Example: add knowledge-based term

38



From UCB to UCT

UCT algorithm by Kocsis and Szepesvari (2006)
It is still the classic algorithm for Monte Carlo Tree Search

e . .butitis the first based on sound theory
Worked better in practice than earlier ad hoc algorithms

Original paper has over 2200 citations -
hugely influential

It is not the first child selection algorithm used in MCTS ...

39



UCT Algorithm Main Ideas

e Algorithm for child selection in Monte Carlo Tree Search
* Name UCT is often used for MCTS with this algorithm
e Combines tree search with simulations

e Uses results of simulations to guide growth of the game
tree

e Uses UCB-like rule to select “best” child of a tree node
¢ Goal: select a good path in the tree to explore/exploit next
e Grows the tree over time

e Stores winrate statistics in each node, used for child
selections

40



Exploration vs Exploitation

Like UCB, UCT tries to balance
Exploration and Exploitation

Exploitation: focus on most promising moves
Exploration: focus on moves where uncertainty about
evaluation is high

Difference: evaluate UCT formula in every node along a
path in the search tree

41



From UCB to UCT

e Review - UCB formula

. log N
UCB(i) = pii + C Oi. . (1)
1

e UCT is very similar: UCT value of move i from parent p:

UCT(i) = fii + C '°i i @
1

¢ Only difference in exploration term

® UCB: uses global count of all simulations N
® UCT: uses simulation count of parent np

e For root, UCT is identical to UCB
e N = simulation count of root
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MCTS Tree Expansion

* How to grow the tree?

Simplest case: add one node per iteration

Add one node from current simulation

Tree grows very selectively

- paths with strong moves become much deeper than
others

If memory fills too quickly:

* Use an expansion threshold t,
® Only add a node if the leaf has at least t, visits
e Example: Fuego program, default t, = 3
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MCTS Simulations

® Run one simulation from the leaf node of tree
e Can use any simulation policy
® Uniform random, rule-based, or probabilistic

Result of simulation is win (1) or loss (0)

Can run more than one simulation from each leaf node

® Tradeoff between speed and accuracy

® Tradeoff between time spent in updating tree vs running
simulations

e Example: for Fuego, on some hardware 2 simulations per
leaf works better than 1
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MCTS Backpropagation - Update Statistics

e Update wins and visit counts along path to root

* Negamax style implementation - flip wins/losses at each
step
® value = l-value changes from wins to losses and back

def backprop (node, value):
while node:
node._wins += value
node. n_visits += 1
value = 1 - value
node = node._parent
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MCTS Move Selection

® Run as many iterations of MCTS as you can
Then select move to play at root
e How?

Browne’s paper mentions several approaches

We discuss the main ones
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MCTS Move Selection

Max child: child with highest number of wins

Robust child: Select the most visited root child. (This is
popular)

Highest winrate

* Not a good/stable method with MCTS
* Why not stable: see next slides

Max-Robust child (see later slide)
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Dangers of Selecting Move by Winrate in MCTS

e MCTS usually expands the move with best winrate
(exploitation)
But sometimes, it explores an inferior-looking move

This can lead to trouble for selecting a move by best
winrate

A move with low simulation count and high uncertainty
about its value might get selected

e See example next slide
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Dangers of Selecting Move by Winrate in MCTS

Example: two moves A and B

A 78 wins / 100 visits, winrate 78%

B 6 wins / 8 visits, current winrate 75%

Assume B has higher UCT score, so we explore B

B gets a win, now has 7 wins / 9 visits, current winrate
77.8%

Explore B again

B gets another win, now has 8 wins / 10 visits, current
winrate 80%

e Assume we stop search now

49



Dangers of Selecting Move by Winrate in MCTS

A 78 wins / 100 visits, winrate 78%

B 8 wins / 10 visits, winrate 80%

If we select B because of highest winrate:
High risk of being wrong

The value of A is much more certain

The value of B still has much higher variance

* Remember discussion of binomial distribution of
simulations

Probability of error is high

50



Max-Robust Child: Extending Search

What if most-simulated move and highest winrate move
are different?
Search may just have found a new best move

® Bis really better than A
Or B may be a fluke

® B got some “lucky” wins, but is worse than A in the long run
Very little evidence to decide which is true

One solution: extend the search in such cases

51



Max-Robust Child: Extending Search

Extending the search can distinuish two cases:
If B is really good:
* B will now receive many more simulations soon, stabilize
value
If B’s recent wins were a fluke:

* |ts winrate and upper confidence bound will drop quickly
with more simulations

Extending search in this way is called “Max-Robust child”
in the paper
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Improving MCTS

Many ways to improve:

Adding knowledge in tree or in simulation
Modify in-tree selection

Modify or replace simulations

We will discuss several good options when we talk about
machine learning and AlphaGo
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Summary

Overview of game tree search and simulation

Discussed Monte Carlo Tree Search

After all the preparation, MCTS mostly combines
previously discussed concepts
4+1 steps of MCTS

® Repeat: select, expand, simulate, backpropagate
¢ Finally: select move to play
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Memory-Augmented Monte Carlo Tree Search

Paper by Chenjun Xiao, Jincheng Mei and Martin Mller
An improvement of MCTS
Outstanding paper award at the 2018 AAAI conference
Here: short, nontechnical summary of the ideas
® Credit: most pictures and some bullet points taken from
Chenjun’s AAAI talk
Interested in technical details?

* Read the paper on Martin’s publications page
http://webdocs.cs.ualberta.ca/~mmueller/
publications.html

® Look at the technical talk on Martin’s talks page https://
webdocs.cs.ualberta.ca/~mmueller/talks.html
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Main Idea

Selection —>

£ b g g

Tree Default
Policy Policy

X
¢ Problem of MCTS: e Can we improve it?
* Most nodes are leaves or e Approach: find similar
near leaf states
* Most nodes have few e Use values of similar
simulations states to improve

e Evaluation is noisy evaluation
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Feature Representation for States

How to define similar states?

Represent state as vector of
features

States are similar if they share
lots of features
In this paper, features are
defined by
® Using a layer of a neural net
¢ Using an unbiased hashing
technique to reduce number of
features

m " Feature
Hashing
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Memory

e Store for state s:
® Feature vector of s
® Pointer back to s to lookup its
value (wins / visits)

" * As we do more search, value
ook b becomes better
AddlUpdate Query e Lookup new state s:

® Compute memory value as
weighted sum of similar states
in memory
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Finding Similar States in Memory

Cosine Distance/Similarity

Item 2
Xz

Hem 1

Cosine Distance

Image source: https://www.
safaribooksonline.com/library/

view/statistics-for-machine

X3

e Compare two feature vectors

Similar if they “point in similar
direction”

Measure: cosine similarity

A standard similarity measure in
machine learning

Larger is better, similarity 1 if
they have same direction

Math: see https:
//en.wikipedia.org/wiki/
Cosine_similarity
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Using Memory with MCTS

e Selection: compute state value
by linear combination of state
value Vs and memory value V),

V(s) = (1 — As) Vs + As Vg
O QG

A O W ¢ Evaluation: evaluate state by

both Monte Carlo and memory

¢ Backup: update MC value and
memory value in tree
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Experiment 1

1000 5000 10000

Play games Fuego + M-MCTS
against normal Fuego

Vary neighbourhood size M

T is a “temperature” parameter
in the algorithm

X-axis: number of
simulations/move

Y-axis: winrate against Fuego
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Experiment 2

0.6

0.5

0.4

 memsize=1000
4 memSize=5000

HH memsize=10000

1000 5000 10000

¢ Varying Memory Size
e Keep neighborhood size M and
T constant
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Summary of M-MCTS

MCTS has very few samples on
most nodes near the leaves

We can “interpolate” the value of
similar nodes

This gives a better evaluation
Not in this summary (read the
paper...):

Math. framework and proof that

this gives better values with high
probability
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RAVE: Rapid Action Value Estimation

e Sylvain Gelly, David Silver, "Monte-Carlo tree search and
rapid action value estimation in computer Go", 2011.

® One of many extension to MCTS

¢ Originally proposed for Go but can be generalized for other
games

¢ Works especially well for NoGo
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Main Idea: All Moves as First (AMAF)

e All moves as first is a heuristic that is useful for games that
can be decomposed into independent subgames
® Each move has its own value (as opposed to each move at
a specific position having its own value)
* The value for a move in one subgame is not affected by
moves in other subgames
® The subgames can be played in any order

* You can treat all moves played in a trajectory as if it is the
first move
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RAVE Example
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Terminology

® [; = w;/n;is the win rate or MC value of the move i
e [i; = w;/n; is the AMAF heuristic value of the move i
® 7 is incremented each time i is played in any trajectory
within the same subtree
® ; is incremented each time a win is the result of / being
played in any trajectory within the same subtree
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The RAVE Algorithm

e |f you use the
AMAF heuristic
instead of the MC
value of each
node in your
search tree, you
get RAVE
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RAVE Properties

e RAVE is similar to the history heuristic in alpha-beta
search
e History heuristic is a dynamic heuristic that keeps track of
which moves cause the most beta-cuts and tries them first
* RAVE also keeps track of which moves are most successful
at different depths of the search
* RAVE gets more samples for each move i
® Everytime j is played in the same subtree, it counts as if it is

sampled once
® You end up with many more samples of /, so it learns faster

® This can actually be bad, because the same move played
at different times can mean very different things
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The MC-RAVE Algorithm

¢ |f you combine the MC value with the AMAF heuristic, you
get the MC-RAVE algorithm

pi = (1 = B)i + Bij. 3)

® (s a scheduling parameter that gives more or less
emphasis to the two evaluations i (MC value) and /i
(AMAF)

® The general rule of thumb is to make 5 dynamic
® Have 3 decay as the number of samples increase
® |n other words, use RAVE because it is useful but

inaccurate, then transition over to the more accurate MC
value as the number of samples increase
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The UCT-RAVE Algorithm

e Lastly, you combine MC-RAVE (an evaluation scheme)

with the UCT
|
UCT (i) = i + C, /°ng7”. (4)
1

® You can initialize the values with knowledge
® For [, fij, 0.5 is a good reference
® For n;, youcansettoO
® For n;, you can set to 20 or 40
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The Scheduling Constant 5

e The g value is set to the following

|k
b= 3np + k ®)

® For 5 =1/2, i.e. the point at which the MC value and the

AMAF value has equal weighting, we can see that kK = np
* |f we set k = 100, that means after p is sampled 100 times,
MC and AMAF values are given equal weighting

e |t is a heuristic that has been shown to be effective for Go
and NoGo

* The original paper includes another scheduling method for
£ which has a stronger mathematical basis
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UCT vs. MC-RAVE
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