
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca


455 Today - Lecture 15

• Probability of selecting right move vs different kinds of
regret
• Upper confidence bound (UCB) algorithm and demo
• Code for today’s lecture

• binomial-select.py and
binomial-select-experiment.txt - How often do
bandits based on Bernoulli experiments make the wrong
choice?

• ucb.py - the UCB algorithm

2



Review - Story So Far

• Last time: Bernoulli experiments
• Results of repeated Bernoulli experiment follow a binomial

distribution
• Next: Bandit Problems and UCB
• Questions:
• What is the probability of making a wrong choice?
• How do we measure the performance, i.e. how to quantify

errors?
• How to design an algorithm that minimizes error?
• One popular answer: UCB

3



Bandit Problems

Image source: https://blogs.

mathworks.com/loren

• Simulation-based players:
• Run many simulations for each

move as evaluation
• Choose move with best winrate

• These decision problems are often
called “bandit problems”. Why?
• “One-armed bandits”

(slot machines in Casino)
• Each bandit has an arm we can pull
• Which arm has the best payoff?
• To find out, need to play and

estimate winrates

4

https://blogs.mathworks.com/loren
https://blogs.mathworks.com/loren


Wrong Choices and Regret

• Scenario: play each arm a number of time
• Pick arm based on results, e.g. best empirical winrates
• We will make mistakes since we make decisions based on

random experiments
• How to measure mistakes?
• (At least) three popular ways

• Probability of making wrong choice
• Simple regret
• Cumulative regret (used in UCB)

5



Probability of making wrong choice, Simple
Regret and Cumulative Regret

• Probability of making wrong choice
• Arm i has best winrate pi , but we choose arm j with pj < pi
• What is the probability of that happening

• Simple regret
• Evaluate how bad our move choice j is compared to best

choice i
• Simple regret is the difference pi − pj
• Simple regret is 0 if we pick a best move, > 0 otherwise
• Simple regret is higher if we pick a really bad move

• Cumulative regret
• Regret pi − pj for every pull of an arm j
• Cumulative regret is the sum of all these regrets

6



Example

• Three arms 1, 2, 3 with p1 = 0.8,p2 = 0.5,p3 = 0.1
• Arm 1 is best (but we don’t know that)
• We pull each arm once. Only arm 2 wins.

• We choose arm 2. Simple regret p1 − p2 = 0.3
• Cumulative regret 0 (pull arm 1) + 0.3 (pull arm 2) +

0.7 (pull arm 3) + 0.3 (second pull of arm 2)
• In terms of “making the wrong choice”, both arm 2 and

arm 3 are equally bad
• For simple regret, it is important that we choose arm 1 in

the end. But choosing arm 2 is still better than arm 3.
• For cumulative regret, it is important that we choose arm 1

most of the time over the whole experiment

7



Example

• Three arms 1, 2, 3 with p1 = 0.8,p2 = 0.5,p3 = 0.1
• Arm 1 is best (but we don’t know that)
• We pull each arm once. Only arm 2 wins.
• We choose arm 2. Simple regret p1 − p2 = 0.3
• Cumulative regret 0 (pull arm 1) + 0.3 (pull arm 2) +

0.7 (pull arm 3) + 0.3 (second pull of arm 2)
• In terms of “making the wrong choice”, both arm 2 and

arm 3 are equally bad
• For simple regret, it is important that we choose arm 1 in

the end. But choosing arm 2 is still better than arm 3.
• For cumulative regret, it is important that we choose arm 1

most of the time over the whole experiment

7



Types of Regret

• Regret: difference between expected value of best arm,
and expected value of arm played
• Regret = 0 if you play a best arm
• Regret > 0 if you don’t
• Cumulative regret: each arm pull costs money
• Simple regret: can try out arms for free. Measure only

regret of final arm selection

• Question: Which type of regret makes the most sense for
using simulations to evaluate which move to make in a
game? (i.e., “arms” are actions from the current state).

8



Types of Regret

• Regret: difference between expected value of best arm,
and expected value of arm played
• Regret = 0 if you play a best arm
• Regret > 0 if you don’t
• Cumulative regret: each arm pull costs money
• Simple regret: can try out arms for free. Measure only

regret of final arm selection
• Question: Which type of regret makes the most sense for

using simulations to evaluate which move to make in a
game? (i.e., “arms” are actions from the current state).

8



Using Regret In Algorithms

• UCB is designed to minimize cumulative regret
• For simulations in games, simple regret would perhaps

make more sense:
• Trying bad moves in simulation does not cost us anything
• It is useful since it helps identifying a bad move
• Only the final move decision is important

• Still, UCB-based algorithms work well
• Much current research on algorithms for simple regret

9



Wrong Choice in Bandits

• Code in binomial-select.py

• How often do bandits based on Bernoulli experiments
make the wrong choice?
• Code implements special case:

only two arms, exact probability calculations
• Error probability depends on how many simulations we do
• More simulations give lower error prob.
• Result strongly depends on how close the two arms are in

winrate
• See experiments in python code and
binomial-select-experiment.txt

10



Error Rate - Theory vs Practice

• In practice, this exact error calculation is not used (why?)

• We don’t know the true winrates
• It gets too complex with more than two arms or more

simulations
• In most applications simple or cumulative regret is used

instead

11



Error Rate - Theory vs Practice

• In practice, this exact error calculation is not used (why?)
• We don’t know the true winrates
• It gets too complex with more than two arms or more

simulations
• In most applications simple or cumulative regret is used

instead

11



UCB Algorithm

• Our simulation players so far used simple move selection
strategy
• All first moves were simulated equally often
• We saw that this is wasteful
• UCB does better
• UCB allocates simulations to moves in a smart way
• It is designed to minimize cumulative regret
• UCB demo from http://mdp.ai/ucb/

• Written by UofA grad student Eugene Chen

12

http://mdp.ai/ucb/


UCB Demo on http://mdp.ai/ucb/

Image source: Eugene Chen, http://mdp.ai/ucb/

13

http://mdp.ai/ucb/
http://mdp.ai/ucb/


Notation for UCB Algorithm

• Goal: select best of k moves mi , 0 ≤ i ≤ k − 1
• ni : Number of times move i has been tried
• Total number of simulations so far: N =

∑
ni

• wi : number of wins for move i among ni tries
• Empirical winrate of move i :
µ̂i = wi/ni

14



UCB Formula

• UCB stands for upper confidence bound
• Define Upper Confidence Bound for move i by

UCB(i) = µ̂i + C

√
logN

ni
. (1)

• C is the exploration constant
• Larger C: require higher confidence level

15



UCB Formula: Why?

Hoeffding’s inequality
For any i.i.d. random variables Xt ∈ [0,1],

Pr

[
1
ni

ni∑
t=1

E[Xt ]− Xt ≥ ε

]
≤ exp

(
−2niε

2
)
.

Let µ̂ = 1
N
∑N

n=1 Xn and µ = E[Xn].
Suppose we want a 1− δ confidence interval for µ. That means
we want to solve for ε such that Pr(µ− µ̂ ≥ ε) ≤ δ.

16



UCB Formula: Why?

Hoeffding’s inequality
For any i.i.d. random variables Xt ∈ [0,1],

Pr

[
1
ni

ni∑
t=1

E[Xt ]− Xt ≥ ε

]
≤ exp

(
−2niε

2
)
.

Let µ̂ = 1
N
∑N

n=1 Xn and µ = E[Xn].
Suppose we want a 1− δ confidence interval for µ. That means
we want to solve for ε such that Pr(µ− µ̂ ≥ ε) ≤ δ.

16



UCB Formula: Why? (2)

Plug in δ and solve for ε:

Pr [µ− µ̂ ≥ ε] = Pr [µ ≥ µ̂+ ε] ≤ exp
(
−2niε

2
)

Pr

[
1
ni

ni∑
n=1

Xn − E[Xn] ≥ ε

]
≤ exp

(
−2niε

2
)

δ ≤ exp
(
−2niε

2
)

log δ = −2niε
2√

− log δ

2

√
1
ni

= ε

(Note that log δ < 0)

Wait: We seem to be missing the factor of logN from the
formula (why?)

UCB(i) = µ̂i + C

√
logN

ni
. (1)

17



UCB Formula: Why? (2)

Plug in δ and solve for ε:

Pr [µ− µ̂ ≥ ε] = Pr [µ ≥ µ̂+ ε] ≤ exp
(
−2niε

2
)

Pr

[
1
ni

ni∑
n=1

Xn − E[Xn] ≥ ε

]
≤ exp

(
−2niε

2
)

δ ≤ exp
(
−2niε

2
)

log δ = −2niε
2√

− log δ

2

√
1
ni

= ε

(Note that log δ < 0)
Wait: We seem to be missing the factor of logN from the
formula (why?)

UCB(i) = µ̂i + C

√
logN

ni
. (1)

17



UCB Algorithm For Bandit Problems

UCB(i) = µ̂i + C

√
logN

ni
(1)

move = argmax
i∈moves

UCB(i) (2)

• Loop:
• Compute UCB(i) for all moves i
• Pick a move i for which UCB(i) is largest
• Run one Bernoulli experiment for move i
• Increase wi if the experiment was a win
• Increase ni and N

• At end: play the most-pulled arm

18



UCB Illustration

Image source: http://iopscience.iop.org/article/

10.1088/1741-2560/10/1/016012

• Graphics show 3
steps in running
UCB
• Red star:

unknown true value
• Blue circle:

empirical mean
• Black line:

confidence interval
• Green: select arm

with highest UCB

19

http://iopscience.iop.org/article/10.1088/1741-2560/10/1/016012
http://iopscience.iop.org/article/10.1088/1741-2560/10/1/016012


UCB Illustration Step 1

• Leftmost picture
• Arm 1 is best arm (highest

true value = red star)
• Arm 1 was unlucky so far
• Its empirical mean is far

below true mean
• Arm 2 has higher UCB

(green)
• Step 1: select arm 2

20



UCB Illustration Step 2

• Arm 2 was selected
• Consequence: Confidence

interval for arm 2 shrinks
• Arm 2 lost in the new

simulation
• Consequence: Mean of

arm 2 drops
• Results shown in middle

picture
• Both consequences lower the

UCB of arm 2
• Arm 1 now has highest UCB
• Step 2: Arm 1 selected

21



UCB Illustration Step 3

• Rightmost picture
• Arm 1 was selected

• Consequence: Confidence
interval for arm 1 shrinks,
its UCB drops

• Arm 1 won in the new
simulation
• Consequence: Mean of

arm 1 increases, UCB
increases more than the
drop from shrinking interval

• Arm 1 remains best by UCB,
gap larger than before
• Step 3: Arm 1 selected again

22



UCB Code Main Loop

• stats[move][0] = number of wins (wi )
• stats[move][1] = number of simulations (ni )

stats = [[0,0] for _ in range(arms)]
for n in range(maxSimulations):

move = findBest(stats, C, n)
if simulate(move):

stats[move][0] += 1 # win
stats[move][1] += 1

23



UCB Code ucb and findBest

def findBest(stats, C, n):
best = -1
bestScore = -INFINITY
for i in range(len(stats)):

score = ucb(stats, C, i, n)
if score > bestScore:

bestScore = score
best = i

return best

def ucb(stats, C, i, n):
if stats[i][1] == 0:

return INFINITY
return mean(stats, i)

+ C * sqrt(log(n) / stats[i][1])

24



Three Details of UCB

1. What if ni = 0 at the beginning? Divide by zero problem
• Answer 1: simulate each move once at the start, so ni = 1
• Answer 2: in my code I return a large constant INFINITY, so

such moves will be chosen first

2. How to choose exploration constant C?
• In practice, we tune that constant for best results
• Theory (later) shows us which choices are safe

3. When does the loop end?
• Can use fixed limit on total number of simulations
• Can stop if one move is “clearly best”, i.e. with high

confidence

25



Three Details of UCB

1. What if ni = 0 at the beginning? Divide by zero problem
• Answer 1: simulate each move once at the start, so ni = 1
• Answer 2: in my code I return a large constant INFINITY, so

such moves will be chosen first
2. How to choose exploration constant C?

• In practice, we tune that constant for best results
• Theory (later) shows us which choices are safe

3. When does the loop end?
• Can use fixed limit on total number of simulations
• Can stop if one move is “clearly best”, i.e. with high

confidence

25



Three Details of UCB

1. What if ni = 0 at the beginning? Divide by zero problem
• Answer 1: simulate each move once at the start, so ni = 1
• Answer 2: in my code I return a large constant INFINITY, so

such moves will be chosen first
2. How to choose exploration constant C?

• In practice, we tune that constant for best results
• Theory (later) shows us which choices are safe

3. When does the loop end?
• Can use fixed limit on total number of simulations
• Can stop if one move is “clearly best”, i.e. with high

confidence

25



UCB vs Simple Simulation Player

UCB(i) = µ̂i + C

√
logN

ni
. (1)

• UCB is much more efficient
• UCB will quickly focus almost all of its effort

on small number of most promising moves
• UCB will never stop exploring other moves because of the
logN term
• UCB will try the really bad-looking moves only very rarely

26



Exploration vs Exploitation in UCB

UCB(i) = µ̂i + C

√
logN

ni
. (1)

• Exploitation: µ̂i . Prefer moves with high winrate
• Exploration: 1/ni term. Prefer moves with large

uncertainty, small ni

• Exploration: logN term. Never stop exploring, try
bad-looking moves again eventually

27



Exploration vs Exploitation in UCB

UCB(i) = µ̂i + C

√
logN

ni
. (1)

• Exploitation: µ̂i . Prefer moves with high winrate
• Exploration: 1/ni term. Prefer moves with large

uncertainty, small ni

• Exploration: logN term. Never stop exploring, try
bad-looking moves again eventually

27



Exploration vs Exploitation in UCB

UCB(i) = µ̂i + C

√
logN

ni
. (1)

• Exploitation: µ̂i . Prefer moves with high winrate
• Exploration: 1/ni term. Prefer moves with large

uncertainty, small ni

• Exploration: logN term. Never stop exploring, try
bad-looking moves again eventually

27



Exploration vs Exploitation in UCB

UCB(i) = µ̂i + C

√
logN

ni
. (1)

• Exploitation: µ̂i . Prefer moves with high winrate
• Exploration: 1/ni term. Prefer moves with large

uncertainty, small ni

• Exploration: logN term. Never stop exploring, try
bad-looking moves again eventually

27



Optimism in the Face of Uncertainty

Principle of optimism in the face of uncertainty:
assume the best plausible outcome for each move

• Using the upper confidence bound implements this
principle in UCB
• Upper confidence bound represents the best plausible

value of a move

28



Exploration vs Exploitation Tradeoff

UCB(i) = µ̂i︸︷︷︸
exploitation

+C

√
logN

ni︸ ︷︷ ︸
exploration

.

• How to trade off between exploring and exploiting?

• Exploration constant C
• C small: focus on exploitation, µ̂i term is most important
• C large: focus on exploration, 1/ni term is most important
• C very large: UCB becomes very similar to the simple

uniform exploration strategy

29



Exploration vs Exploitation Tradeoff

UCB(i) = µ̂i︸︷︷︸
exploitation

+C

√
logN

ni︸ ︷︷ ︸
exploration

.

• How to trade off between exploring and exploiting?
• Exploration constant C
• C small: focus on exploitation, µ̂i term is most important
• C large: focus on exploration, 1/ni term is most important
• C very large: UCB becomes very similar to the simple

uniform exploration strategy

29



Code ucb.py and Examples

• ucb.py implements UCB algorithm and two examples
• Two cases
• Easy case: difference in arms quite large
• 10 arms, true winrates 0, 0.1,...,0.8, 0.9
• Hard case: top two arms very close together
• payoff = [0.5, 0.61, 0.62, 0.55]

30



UCB in Go3

• Switch on with command line option
• moveselect=UCB
• Select average number of simulations/move with -sim

• Example: 50 simulations/move
• Assume we have 20 legal moves in total
• moveselect=simple will run exactly 50 sim. on each

move, total 1000 sim.
• moveselect=UCB will also run 1000 sim. in total
• It will choose the first move in each simulation by UCB
• Effect: much more focus on strongest moves
• You can change the exploration parameter C

31



A Small Scale Test of UCB in Go3

• Two versions of Go3 against each other
• moveselect=simple vs moveselect=UCB
• 5x5 board
• 50 simulations/move
• movefilter=false, simulations=random
• Win rate: 74% (± 4.4) for UCB

32



Summary and Limitations of UCB

• UCB fixes an efficiency problem of the simulation player
• It does not waste much time on hopeless moves
• It does not fix any other problem of the simulation player
• It reaches the performance limits of simple

simulation-based play more quickly
• Main limitation: still only 1 ply deep “tree search”
• Below that, still vulnerable to all biases in the simulation

policy
• After move 1, still plays randomly for both opponent and

player
• Only deeper tree search can fix that

33



Summary and Next Topics

Summary:
• Bandit problems
• From confidence bounds to UCB algorithm
• Strengths and limitations of UCB

Next Topics:
• High-level overview of search and simulation-based

algorithms so far
• Selective search
• Monte Carlo Tree Search (MCTS) framework
• UCT Algorithm: Combines MCTS with UCB

34


	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search

