Computing Science (CMPUT) 455

Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta
james.wrightQualberta.ca

Fall 2021

james.wright@ualberta.ca

455 Today - Lecture 15

e Probability of selecting right move vs different kinds of
regret
e Upper confidence bound (UCB) algorithm and demo
e Code for today’s lecture
® binomial-select.py and
binomial-select-experiment.txt - How often do
bandits based on Bernoulli experiments make the wrong
choice?
® ucb.py - the UCB algorithm

Review - Story So Far

e Last time: Bernoulli experiments

¢ Results of repeated Bernoulli experiment follow a binomial
distribution

¢ Next: Bandit Problems and UCB
® Questions:
¢ What is the probability of making a wrong choice?

¢ How do we measure the performance, i.e. how to quantify
errors?

* How to design an algorithm that minimizes error?
¢ One popular answer: UCB

Bandit Problems

Image source: https://blogs.

mathworks.com/loren

Simulation-based players:

® Run many simulations for each
move as evaluation
® Choose move with best winrate

These decision problems are often
called “bandit problems”. Why?

“One-armed bandits”
(slot machines in Casino)

Each bandit has an arm we can pull
Which arm has the best payoff?

To find out, need to play and
estimate winrates

https://blogs.mathworks.com/loren
https://blogs.mathworks.com/loren

Wrong Choices and Regret

Scenario: play each arm a number of time

Pick arm based on results, e.g. best empirical winrates

We will make mistakes since we make decisions based on
random experiments

How to measure mistakes?
(At least) three popular ways

® Probability of making wrong choice
e Simple regret
e Cumulative regret (used in UCB)

Probability of making wrong choice, Simple
Regret and Cumulative Regret

¢ Probability of making wrong choice
® Arm / has best winrate p;, but we choose arm j with p; < p;
* What is the probability of that happening
e Simple regret
® Evaluate how bad our move choice j is compared to best
choice i
® Simple regret is the difference p; — p;
® Simple regret is 0 if we pick a best move, > 0 otherwise
® Simple regret is higher if we pick a really bad move
e Cumulative regret

® Regret p; — p; for every pull of an arm
e Cumulative regret is the sum of all these regrets

Example

e Threearms 1, 2, 3with py = 0.8, 0o = 0.5, p3 = 0.1
e Arm 1 is best (but we don’t know that)
¢ We pull each arm once. Only arm 2 wins.

Example

e Threearms 1, 2, 3with py = 0.8, 0o = 0.5, p3 = 0.1
e Arm 1 is best (but we don’t know that)

¢ We pull each arm once. Only arm 2 wins.

e We choose arm 2. Simple regret p; — p» = 0.3

e Cumulative regret 0 (pull arm 1) + 0.3 (pull arm 2) +
0.7 (pull arm 3) + 0.3 (second pull of arm 2)

¢ In terms of “making the wrong choice”, both arm 2 and
arm 3 are equally bad

e For simple regret, it is important that we choose arm 1 in
the end. But choosing arm 2 is still better than arm 3.

e For cumulative regret, it is important that we choose arm 1
most of the time over the whole experiment

Types of Regret

e Regret: difference between expected value of best arm,
and expected value of arm played

® Regret = 0 if you play a best arm
e Regret > 0 if you don’t
e Cumulative regret: each arm pull costs money

e Simple regret: can try out arms for free. Measure only
regret of final arm selection

Types of Regret

e Regret: difference between expected value of best arm,
and expected value of arm played

® Regret = 0 if you play a best arm
® Regret > 0 if you don’t
e Cumulative regret: each arm pull costs money

e Simple regret: can try out arms for free. Measure only
regret of final arm selection

e Question: Which type of regret makes the most sense for
using simulations to evaluate which move to make in a
game? (i.e., “arms” are actions from the current state).

Using Regret In Algorithms

UCB is designed to minimize cumulative regret

For simulations in games, simple regret would perhaps
make more sense:

* Trying bad moves in simulation does not cost us anything
* |t is useful since it helps identifying a bad move
¢ Only the final move decision is important

Still, UCB-based algorithms work well
Much current research on algorithms for simple regret

Wrong Choice in Bandits

Codeinbinomial-select.py

How often do bandits based on Bernoulli experiments
make the wrong choice?

Code implements special case:
only two arms, exact probability calculations

Error probability depends on how many simulations we do
More simulations give lower error prob.

Result strongly depends on how close the two arms are in
winrate

See experiments in python code and
binomial-select-experiment.txt

Error Rate - Theory vs Practice

® |n practice, this exact error calculation is not used (why?)

Error Rate - Theory vs Practice

® |n practice, this exact error calculation is not used (why?)
* We don’t know the true winrates
® |t gets too complex with more than two arms or more
simulations
* In most applications simple or cumulative regret is used
instead

UCB Algorithm

¢ Our simulation players so far used simple move selection
strategy

e All first moves were simulated equally often

* We saw that this is wasteful

e UCB does better

e UCB allocates simulations to moves in a smart way
¢ |t is designed to minimize cumulative regret

e UCB demo from http://mdp.ai/ucb/

e Written by UofA grad student Eugene Chen

http://mdp.ai/ucb/

UCB Demo on http://mdp.ai/ucb/

Simple k-armed Bandit UCB Viz

Confidence: o.95
Reward System: - Gaussian g Bernoulli

Number of Bandits: 4

Reset

1.76

L]
L X]

Image source: Eugene Chen, http://mdp.ai/ucb/

http://mdp.ai/ucb/
http://mdp.ai/ucb/

Notation for UCB Algorithm

Goal: select best of k moves m;, 0 <j < k — 1
n;: Number of times move i has been tried
Total number of simulations so far: N =" n;
w;: number of wins for move i among n; tries
Empirical winrate of move i:

fii = w;/n;

UCB Formula

UCB stands for upper confidence bound

Define Upper Confidence Bound for move i by

UCB(i) = i + Cy | &

]

C is the exploration constant
Larger C: require higher confidence level

UCB Formula: Why?

Hoeffding’s inequality
For any i.i.d. random variables X; € [0, 1],

n;
Pr ’]'/;E[Xt] — Xt > e] < exp (—2”,’62) .

UCB Formula: Why?

Hoeffding’s inequality
For any i.i.d. random variables X; € [0, 1],

n;
Pr ’]'/;E[Xt] — Xt > e] < exp (—2”,’62) .

Let = & SN | X, and p = E[X).
Suppose we want a 1 — ¢ confidence interval for u. That means
we want to solve for e such that Pr(u — & > €) < 4.

UCB Formula: Why? (2)

Plug in 6 and solve for e:

Priu—p>e€ =Priu>f+e <exp (—2”/62)

n;
Pr [:7/ ;Xn —E[X,] > e] < exp (—2n,-62>

0 < exp (—2[7/62)
log§ = —2n;€?

[logd J1
2 n,-_e

(Note that log § < 0)

UCB Formula: Why? (2)

Plug in 6 and solve for e:

Priu—p>e€ =Priu>f+e <exp (—2”/62)

n;
Pr [:7/ ;Xn —E[X,] > e] < exp (—2n,-62>

0 < exp (—2[7/62)
log§ = —2n;€?

logd [1
Vo2 \/m =€ -
(Note that log § < 0)

Wait: We seem to be missing the factor of log N from the
formula (why?)
UCB(i) = i + Cy | &N (1)

l

UCB Algorithm For Bandit Problems

UCB() = u + C|| &

1

move = argmax UCB(i)
iemoves

* Loop:
® Compute UCB(i) for all moves i
® Pick a move i for which UCB(/) is largest
® Run one Bernoulli experiment for move i
® Increase w; if the experiment was a win
® Increase n; and N

e At end: play the most-pulled arm

UCB lllustration

Arm 1 Arm 2 Wrm 1 Arm 2
Tu=1 Ty =1 Tya=1 Tyy=2

Arm 1 Arm 2
1a=2 Tp,=2

* i
® iy
I B

Image source: http://iopscience.iop.org/article/

10.1088/1741-2560/10/1/016012

Graphics show 3
steps in running
ucCB

Red star:

unknown true value
Blue circle:
empirical mean
Black line:
confidence interval

Green: select arm
with highest UCB

http://iopscience.iop.org/article/10.1088/1741-2560/10/1/016012
http://iopscience.iop.org/article/10.1088/1741-2560/10/1/016012

UCB lllustration Step 1

T B

Leftmost picture

Arm 1 is best arm (highest
true value = red star)

Arm 1 was unlucky so far

Its empirical mean is far
below true mean

Arm 2 has higher UCB
(green)

e Step 1: select arm 2

20

UCB lllustration Step 2

* i

I By,

Arm 2 was selected

® Consequence: Confidence
interval for arm 2 shrinks

Arm 2 lost in the new
simulation

® Consequence: Mean of
arm 2 drops

Results shown in middle
picture

Both consequences lower the
UCB of arm 2

Arm 1 now has highest UCB
Step 2: Arm 1 selected

21

UCB lllustration Step 3

I By

¢ Rightmost picture
e Arm 1 was selected
® Consequence: Confidence
interval for arm 1 shrinks,
its UCB drops
e Arm 1 won in the new
simulation
® Consequence: Mean of
arm 1 increases, UCB
increases more than the
drop from shrinking interval

e Arm 1 remains best by UCB,
gap larger than before

Step 3: Arm 1 selected again

22

UCB Code Main Loop

® stats[move] [0] = number of wins (w;)
® stats[move] [1] = number of simulations (n;)

stats = [[0,0] for _ in range (arms)]
for n in range (maxSimulations) :
move = findBest (stats, C, n)

if simulate (move) :
stats[move] [0] += 1 # win
stats[move] [1] += 1

23

UCB Code ucb and findBest

def findBest (stats, C, n):
best = -1
bestScore = —-INFINITY
for 1 in range(len(stats)):
score = ucb(stats, C, i, n)
if score > bestScore:
bestScore = score
best = 1
return best

def ucb(stats, C, i, n):
if stats[i] [1l] ==
return INFINITY
return mean (stats, i)
+ C * sgrt(log(n) / stats[i][1])

24

Three Details of UCB

1. What if n; = 0 at the beginning? Divide by zero problem
® Answer 1: simulate each move once at the start, so n; = 1
® Answer 2: in my code | return a large constant INFINITY, so
such moves will be chosen first

25

Three Details of UCB

1. What if n; = 0 at the beginning? Divide by zero problem
® Answer 1: simulate each move once at the start, so n; = 1
® Answer 2: in my code | return a large constant INFINITY, so
such moves will be chosen first
2. How to choose exploration constant C?

* |n practice, we tune that constant for best results
* Theory (later) shows us which choices are safe

25

Three Details of UCB

1. What if n; = 0 at the beginning? Divide by zero problem
® Answer 1: simulate each move once at the start, so n; = 1
® Answer 2: in my code | return a large constant INFINITY, so
such moves will be chosen first
2. How to choose exploration constant C?
* |n practice, we tune that constant for best results
* Theory (later) shows us which choices are safe
3. When does the loop end?
¢ Can use fixed limit on total number of simulations
® Can stop if one move is “clearly best”, i.e. with high
confidence

25

UCB vs Simple Simulation Player

log N

i

UCB(i) = jij + C

UCB is much more efficient

UCB will quickly focus almost all of its effort
on small number of most promising moves

UCB will never stop exploring other moves because of the
log N term

UCB will try the really bad-looking moves only very rarely

26

Exploration vs Exploitation in UCB

. log N
UCB(i) = jii + C °i . (1)

i

e Exploitation: /i;. Prefer moves with high winrate
e Exploration: 1/n; term. Prefer moves with large
uncertainty, small n;

e Exploration: log N term. Never stop exploring, try
bad-looking moves again eventually

27

Exploration vs Exploitation in UCB

uCB(i) = i+ Cy | 8N,

i

¢ Exploitation: /i;. Prefer moves with high winrate
e Exploration: 1/n; term. Prefer moves with large
uncertainty, small n;

e Exploration: log N term. Never stop exploring, try
bad-looking moves again eventually

27

Exploration vs Exploitation in UCB

UCB(i) = fii + Cy | log V. (1)

e Exploitation: /i;. Prefer moves with high winrate
e Exploration: term. Prefer moves with large
uncertainty, small n;

e Exploration: log N term. Never stop exploring, try
bad-looking moves again eventually

27

Exploration vs Exploitation in UCB

UCB(i) = fis + Cy| ——. (1)

e Exploitation: /i;. Prefer moves with high winrate

e Exploration: 1/n; term. Prefer moves with large
uncertainty, small n;

e Exploration: term. Never stop exploring, try
bad-looking moves again eventually

27

Optimism in the Face of Uncertainty

Principle of optimism in the face of uncertainty:
assume the best plausible outcome for each move

e Using the upper confidence bound implements this
principle in UCB

e Upper confidence bound represents the best plausible
value of a move

28

Exploration vs Exploitation Tradeoff

. lo
UCB(i)= fpi +Cy/-2
~—~ n;
exploitation ~——
exploration

¢ How to trade off between exploring and exploiting?

29

Exploration vs Exploitation Tradeoff

. R log N
UCB(i) = f s
~—~ n;

exploitation ~——
exploration

¢ How to trade off between exploring and exploiting?

¢ Exploration constant

e C small: focus on exploitation, fi; term is most important
e C large: focus on exploration, 1/n; term is most important

e C very large: UCB becomes very similar to the simple
uniform exploration strategy

29

Code ucb.py and Examples

® ucb.py implements UCB algorithm and two examples
Two cases

e Easy case: difference in arms quite large

10 arms, true winrates 0, 0.1,...,0.8, 0.9

Hard case: top two arms very close together

payoff = [0.5, 0.61, 0.62, 0.55]

30

UCB in Go3

e Switch on with command line option

® moveselect=UCB

e Select average number of simulations/move with -sim
e Example: 50 simulations/move

e Assume we have 20 legal moves in total

® moveselect=simple Will run exactly 50 sim. on each
move, total 1000 sim.

® moveselect=UCB will also run 1000 sim. in total

e |t will choose the first move in each simulation by UCB
e Effect: much more focus on strongest moves

¢ You can change the exploration parameter C

31

A Small Scale Test of UCB in Go3

Two versions of Go3 against each other

® moveselect=simple VS moveselect=UCB
5x5 board

50 simulations/move

movefilter=false, simulations=random

Win rate: 74% (+ 4.4) for UCB

32

Summary and Limitations of UCB

UCB fixes an efficiency problem of the simulation player
It does not waste much time on hopeless moves
It does not fix any other problem of the simulation player

It reaches the performance limits of simple
simulation-based play more quickly

Main limitation: still only 1 ply deep “tree search”

Below that, still vulnerable to all biases in the simulation
policy

After move 1, still plays randomly for both opponent and
player

Only deeper tree search can fix that

33

Summary and Next Topics

Summary:
¢ Bandit problems
¢ From confidence bounds to UCB algorithm
e Strengths and limitations of UCB

Next Topics:

¢ High-level overview of search and simulation-based
algorithms so far

¢ Selective search
¢ Monte Carlo Tree Search (MCTS) framework
e UCT Algorithm: Combines MCTS with UCB

34

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search

