
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca

455 Today - Lecture 14

• Probabilistic simulation policies
• Repeated simulations as Bernoulli experiments
• Statistics background for bandit algorithms, UCB

2

Coursework

• Reading: parts of Browne et al, A Survey of Monte Carlo
Tree Search Methods
• Activities
• Code

• prob_select.py - probabilistic selection from a list
• bernoulli.py and mystery-bernoulli.py for today’s

lecture and activities
• Quiz 8: On improving simulations with rules and patterns,

and probabilistic simulation policies.
• Due Monday

3

NSERC!

Why apply for NSERC CGS-M?
• $17,500 for 1 year

• Prestigious scholarship that looks
great on your CV!

• Higher chance of getting into the
university you want — can choose
upto 3

• Can work with preferred supervisor,
even if they don’t have full funding
available

Who is eligible?
• Canadians, PRs, & Protected Person

under subsection 95(2) of
the Immigration and Refugee
Protection Act (Canada)

• GPA >= 3.5 in last 2 yrs of study
• Joining/in research-based program

Why NSERC CGSM at UofA?
•Awesome research opportunities

•Automatic top-up!

How will we help you?
•FGSR info session on Nov. 2

• Individual review appointments
Nov. 22 - 25

https://bit.ly/nserc-cgsm-2022

Deadline
Dec. 1st!

4

Quiz 7 Review

• Quiz 7, Simulations
• 72 attempts. Average grade: 89%
• Lowest scores: Q3: 79%, Q8: 80%, Q9: 84%, Q10: 84%

5

Quiz 7 Review: Q3 and Q8

Q3 We can balance physics errors in our simulation model by
doing more simulations.
• False. If the model is erroneous, then it will be biased

toward incorrect results; no amount of extra simulations will
balance that out.

Q8 Go3 builds a deep search tree while running random
simulations.
• False. Go3 performs a 1-ply search, with each action

evaluated via simulations.

6

Quiz 7 Review: Q3 and Q8

Q3 We can balance physics errors in our simulation model by
doing more simulations.
• False. If the model is erroneous, then it will be biased

toward incorrect results; no amount of extra simulations will
balance that out.

Q8 Go3 builds a deep search tree while running random
simulations.
• False. Go3 performs a 1-ply search, with each action

evaluated via simulations.

6

Quiz 7 Review: Q9 and Q10

Q9 Like Go1, Go3 can play a pass only at the very end, to
avoid eye-filling moves.
• False. The random simulations will avoid playing pass until

the very end; however, Go3 considers pass as one of the
moves to evaluate using simulations.

Q10 Given enough simulations, our Go3 simulation-based
player becomes almost perfect.
• False. Go3 is stronger than our earlier attempts, but still

quite limited.

7

Quiz 7 Review: Q9 and Q10

Q9 Like Go1, Go3 can play a pass only at the very end, to
avoid eye-filling moves.
• False. The random simulations will avoid playing pass until

the very end; however, Go3 considers pass as one of the
moves to evaluate using simulations.

Q10 Given enough simulations, our Go3 simulation-based
player becomes almost perfect.
• False. Go3 is stronger than our earlier attempts, but still

quite limited.

7

Stochastic vs Deterministic Simulation Policies

• Simulation-based player:
• Simulations need to be stochastic, randomize moves
• Simulations need to explore different move sequences

• Opposite of stochastic: deterministic
• Deterministic policy: all simulations from same start state

play the same sequence, have the same result
• This is useless!
• All moves would have either a 0% or 100% winrate

8

Why Use Randomized Simulation Policies?

• Having variety in simulations is very important
• It gives us more information about the huge state space
• This is the main idea of sampling
• We hope that errors in simulation “average out” through

randomness
• This is true if simulations have no bias
• The variance can be reduced by getting more samples
• Contrast with deterministic policy:

it repeats exactly the same errors in each try

9

From Rule-Based to Probabilistic Simulation
Policies

• We have seen two types of policies so far
• Uniform Random: all legal moves equally likely
• Rule-Based: all moves from a (short) list equally likely
• Now we introduce a third type of policies: Probabilistic

10

Motivation

• Rule-based policies work OK but are quite crude
• What if we want a better distribution over all moves?
• Example:

• Play pattern moves with some higher probability
• Play other moves with some other, smaller probability

• How do they work? Start with simpler example

11

prob_select.py:
Probabilistic Selection from a List

• Imagine a large table with a selection of different drinks
• There are more of some drinks than others
• Random experiment: waiter randomly grabs one drink
• Implementation in prob_select.py
• Given probability of selecting each drink

• drinks = [("Coffee", 0.3), ("Tea", 0.2),
("OJ", 0.4),...]

• Repeat random experiment many times
• Measure drink selection frequency empirically

12

prob_select.py Sample Run

python3 prob_select.py
Experiment 0: OJ
Experiment 1: OJ
Experiment 2: Tea
Experiment 3: Coffee
Experiment 4: OJ
...
Experiment 99: OJ
Coffee probability 0.3, empirical frequency 0.26
Tea probability 0.2, empirical frequency 0.22
OJ probability 0.4, empirical frequency 0.4
Milk probability 0.07, empirical frequency 0.08
RootBeer probability 0.03, empirical frequency 0.04

13

Probabilistic Simulation Policy

• Same idea as in prob_select.py

• Used for one move decision step in a simulated game
• Given a game position in a simulated game
• Position has n legal moves
• Move i chosen with probability pi

• Probabilities sum to 1:
∑n−1

i=0 pi = 1
• Idea: heuristic to give (probably) better moves a higher

chance of being played
• Can also use as a “soft” filter: give (probably) bad moves a

low probability

14

Probabilities in Simulation Policies - So Far

• So far we have seen two kinds of policies
• Both can be viewed as (simple) probabilistic policies
• Uniform random

• n possible moves
• Each chosen with probability 1/n

• Rule-based policy
• n possible moves
• m ≤ n of them selected by a rule (e.g. patterns)
• Each chosen with probability 1/m
• All n −m other moves have probability 0

15

General Probabilistic Simulation Policy

• n moves
• Move i has probability pi

• ∑n−1
i=0 pi = 1

• Give moves that “look strong” a higher pi than others
• The paper by Rémi Coulom that you read last week

explains one way to come up with such probabilities
• It is based on learning knowledge from game records

16

Visualizing Probabiliies

• Next slide shows “heat map”
• Moves on Go board encoded in different colors
• High probability moves in red/orange (probably good)
• Medium probability moves in green (probably mediocre)
• Low probability moves in blue (likely bad/meaningless)

17

Coulom Move Patterns, https:
//www.remi-coulom.fr/Amsterdam2007/

18

https://www.remi-coulom.fr/Amsterdam2007/
https://www.remi-coulom.fr/Amsterdam2007/

Rule-based vs Probabilistic Policies

• Which is better, rule-based or probabilistic policy?
• No clear answer
• Rules are easier to code efficiently
• Probabilities are better suited for many machine learning

methods

19

Fuego: Mixing Rule-based and
Probability-based Policies

• The Go program Fuego uses both rules and probability
• Most of its simulation policy is rule-based as in Go3

• About a dozen different rules and filters
• AtariCapture, AtariDefend, LowLiberty, Patterns,...,Random

• Probabilistic selection:
• For 3x3 patterns
• Fuego uses a pre-computed table of probabilities for each

pattern
• More urgent pattern moves chosen more often

20

Summary of Simulation Policies

• Looked at three types of simulation policies
• Uniform random
• Simple rules and filters
• Probability-based
• Where do probabilities come from?
• Answer: from machine-learned knowledge

21

Statistical Analysis of Repeated Simulations

22

Next topic: Better Top-Level Algorithm

• So far, we focused on better simulations
• Random, rule-based, probabilistic
• Next, we focus on top level algorithm in FlatMC
• So far: uniform move selection
• Use same number n of simulations to evaluate each move
• This is not smart!
• See example on next slide

23

Example - Winrates of FlatMC

Winrates with 10, 100
and 1000 simulations
per move.

• 10 Simulations/move winrates:
[(’c1’, 1.0), (’b5’, 0.6), (’a5’, 0.5),
(’c5’, 0.5), (’d5’, 0.5), (’Pass’,
0.4), (’e2’, 0.0)]
• 100 Simulations/move winrates:

[(’c1’, 1.0), (’b5’, 0.63), (’Pass’,
0.58), (’c5’, 0.53), (’a5’, 0.49),
(’d5’, 0.46), (’e2’, 0.06)]
• 1000 Simulations/move

winrates: [(’c1’, 1.0), (’Pass’,
0.572), (’b5’, 0.565), (’d5’,
0.524), (’a5’, 0.523), (’c5’,
0.484), (’e2’, 0.087)]

24

Example - Comparing Winrates

10 Sim:
c1: 1.0, e2: 0.0
100 Sim:
c1: 1.0, e2: 0.06
1000 Sim:
c1: 1.0, e2: 0.087

• Do we really need 1000 simulations
to be convinced that c1 is better
than e2? No.
• Smarter algorithm:
• Explore all moves in the beginning
• Focus much more on a few

highest-percentage moves soon
• This leads to better decisions, less

wasted time
• Example: the famous UCB

algorithm

25

Statistical Analysis of Repeated Simulations

• We study some concepts from statistics
• Needed to understand the UCB algorithm for move

selection
• Law of Large Numbers
• Bernoulli distribution
• Benefits and limits of doing more simulations
• More concepts: Binomial Distribution, confidence intervals,

confidence level

26

Borel’s Law of Large Numbers

• There are several Laws of Large Numbers
• A group of theorems in probability theory
• General idea: repeating experiments many times will get

results close to expectation
• Borel’s law:
• An event E has probability p
• E occurs x times in n experiments
• As n→∞:

x/n→ p

• Empirical frequency x/n approaches probability p
• Consequence: can use x/n to estimate an unknown p
• This estimate will be very rough when n is small
• Improves as n gets larger, and approaches true p

27

Bernoulli Distribution

• Bernoulli distribution (Jacob Bernoulli, 1655 - 1705)
• One of the simplest probability distributions
• Random variable X with two different values

• 0 (loss) or 1 (win)
• Example: coin flip
• Example: win/loss outcome of a single simulation in Go
• Not a Bernoulli distribution:

outcome of a simulation in TicTacToe (why not?)

• three outcomes, win/loss/draw

28

Bernoulli Distribution

• Bernoulli distribution (Jacob Bernoulli, 1655 - 1705)
• One of the simplest probability distributions
• Random variable X with two different values

• 0 (loss) or 1 (win)
• Example: coin flip
• Example: win/loss outcome of a single simulation in Go
• Not a Bernoulli distribution:

outcome of a simulation in TicTacToe (why not?)
• three outcomes, win/loss/draw

28

Bernoulli Distribution (2)

Image source:

http://planet.racket-lang.

org/package-source/

williams/science.plt/3/1/

planet-docs/science/

random-distributions.html

• Given fixed probability p
with 0 ≤ p ≤ 1
• (Wikipedia says 0 < p < 1, but in

games p can be equal to 0 or 1)
• Probabilities for outcomes 1 and 0

Pr(X = 1) = p
Pr(X = 0) = 1− p
• Sometimes, q is written for 1− p
• Example: p = 0.6,q = 1−p = 0.4

29

http://planet.racket-lang.org/package-source/williams/science.plt/3/1/planet-docs/science/random-distributions.html
http://planet.racket-lang.org/package-source/williams/science.plt/3/1/planet-docs/science/random-distributions.html
http://planet.racket-lang.org/package-source/williams/science.plt/3/1/planet-docs/science/random-distributions.html
http://planet.racket-lang.org/package-source/williams/science.plt/3/1/planet-docs/science/random-distributions.html
http://planet.racket-lang.org/package-source/williams/science.plt/3/1/planet-docs/science/random-distributions.html

Bernoulli Experiment

Image source: https:

//en.wikipedia.org/

wiki/Coin_flipping

• Random experiment, typically repeated
many times, same fixed p
• Each single experiment draws from

Bernoulli distribution for p
• Example: coin flip with fair coin,

p = q = 0.5
• Implementation: bernoulli.py - also

see Activity

def bernoulli(p, limit):
wins = 0
for _ in range(limit):

if random.random() < p:
wins += 1

return wins / limit

30

https://en.wikipedia.org/wiki/Coin_flipping
https://en.wikipedia.org/wiki/Coin_flipping
https://en.wikipedia.org/wiki/Coin_flipping

Simulation-based Evaluation as Bernoulli
Experiments - Example

Running a fixed
simulation policy from a
fixed Go position is a
Bernoulli experiment

• Example: winrates after
playing each move,
with 10, 100, 1000 sim.
• For each move: converges to a

fixed probability

Move 10 100 1000
c1 1.0 1.0 1.0
b5 0.6 0.63 0.565
a5 0.5 0.49 0.523
c5 0.5 0.53 0.484
d5 0.5 0.46 0.524

Pass 0.4 0.58 0.572
e2 0.0 0.06 0.087

31

Simulation is a Bernoulli Experiment

.4 .6

.1 .7 .2

0

.2

1

.3

1

.5

Why is random sampling from a game tree a
Bernoulli experiment?

Proof sketch
• Finite tree, finitely many leaves, finitely

many paths to leaves
• Each leaf has fixed value 0 or 1
• In each node, the simulation policy has a

fixed distribution over its children
• We can compute the probability of

choosing each path as the product of the
probabilities of choosing each move on
the path

32

Simulation is a Bernoulli Experiment #2

.4 .6

.1 .7 .2

0

.2

1

.3

1

.5

.4 * .7 * .5 = .014

• The probability of choosing some specific
path to a leaf is a (small) constant
• The winning probability at the root is just

the probability of choosing a path leading
to a win
• This is a sum of (a huge number of)

constants, so is a constant p
• Each simulation is like a Bernoulli

experiment with parameter p
• We win by choosing a winning path, which

happens with probability p

33

Analysis

• Analyse “flat” simulation player (1 ply tree)
• Runs n simulations on each child c of the root
• Focus on one child c now
• If we increase n, run more and more simulations,

the winrate for c will stabilize
• Reason: law of large numbers

• Limit, infinite number of simulations:
• Winrate will converge to the “true winrate”
• For one particular random simulation policy
• For one particular start state
• Winrate may be far from true minimax value

• Reason: bias of simulation policy

34

Simple Move Selection is Inefficient

1000
Simulations/move
winrates: [(’c1’, 1.0),
(’Pass’, 0.572), (’b5’,
0.565), (’d5’, 0.524),
(’a5’, 0.523), (’c5’,
0.484), (’e2’, 0.087)]

• We really do not need 1000
simulations to figure out that e2 is
bad
• Huge gap between winrates of

bad move e2 and best move c1
• Very limited gain from running

more and more simulations on
worst moves
• Very inefficient use of time
• We need to explore all moves,

but...
• We should focus most effort on

the most likely good moves

35

mystery-bernoulli.py:
Guessing the Winrate

• Activity: experiment with mystery-bernoulli.py

• Program generates a random p

• Runs a number of Bernoulli experiments
• Outputs the empirical winrate
• How well can you guess the true p?
• How does the number of simulations affect it?

36

Optional Activity: Mystery game

• Program your own simulation-based game
• First, choose number of moves n
• Next, generate the true winrates pi for each move i
• Next, ask the user for number of simulations/move
• Run that many simulations and collect empirical winrates

(as in Go3)
• Print out the empirical winrates
• Let the user guess the best move
• Now, let the user know the true winrates and true best

move
• Discuss: when is this game easy? When is it hard?

37

Benefits of More Simulations

Benefits of running more simulations:
• Reduce variance
• Better selection when several moves are almost tied for

first
• Rule out “unlucky” cases which occur with low number of

simulations:
• Bad move wins many simulations - estimated winrate too

high
• Good move loses many simulations - estimated winrate too

low

38

Optimize What Simulations Tell Us

• Goal: a smarter way to decide:
• Which moves do we most need to evaluate better by

running more simulations?
• Let’s study the results of doing many simulations on one

move
• The outcomes follow a binomial distribution

39

Binomial Distribution

Image source:

https://en.wikipedia.org/wiki/

Binomial_distribution

• Repeat the same Bernoulli
experiment many times
• Number of wins is binomially

distributed
• B(n,p) = number of wins in n

tries, where each has win
probability p
• Expected value of B(n,p): np
• As n grows, distribution of

B(n,p)/n becomes more
narrowly centered around p
• Probability of being far from p

decreases as n grows

40

https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Binomial_distribution

Binomial Distribution

0.0 0.2 0.4 0.6 0.8 1.0
x/n

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pr
(x

 |
n,

p)

n=20, p=0.5
n=20, p=0.7
n=40, p=0.5

• Repeat the same Bernoulli
experiment many times
• Number of wins is binomially

distributed
• B(n,p) = number of wins in n

tries, where each has win
probability p
• Expected value of B(n,p): np
• As n grows, distribution of

B(n,p)/n becomes more
narrowly centered around p
• Probability of being far from p

decreases as n grows

40

Bandit Algorithms and UCB - Motivation

• Consider top 2 moves from example
• After 10 simulations: (’c1’, 1.0), (’b5’, 0.6)
• After 100 simulations: (’c1’, 1.0), (’b5’, 0.63)
• How sure are we that c1 is better?
• We want to compare the two true means of c1 and b5
• We only have the empirical means for moves c1 and b5
• In theory, b5 (or another even lower-ranked move) could

still be better
• It is extremely unlikely given the results so far - so we could

ignore that move...
• How unlikely? We need some more statistics to answer

that

41

Confidence Interval

Image source:

https://www.quora.com

• Confidence Interval in statistics:
• A range in which the true value

is estimated to be
• Confidence level:

• Probability that the range
contains the true value

42

https://www.quora.com

Confidence Interval for repeated Bernoulli
experiment

Image source:

http://www.biyee.net

• Repeated Bernoulli experiment
with unknown win probability p
• Given empirical data

Example: 20 wins in 30 tries
• From this, we need to estimate

the unknown true mean p
• For any mean p, distribution of

number of wins out of 30
experiments is the binomial
distribution B(30,p)
• p is likely to be close to the

empirical mean 20/30 = 0.66..

43

http://www.biyee.net

Confidence Interval for repeated Bernoulli
experiment

Image source:

http://www.biyee.net

• For a given confidence level, we can
define an interval around the empirical
mean that likely contains the true mean
• Example: empirical mean 0.666..

• For lower confidence level, the intervals
are smaller - more chance of error
• For higher confidence level, the intervals

are larger - less chance of error
• Example: 90% confidence interval

around 0.666 = (0.50,0.81)
• For any value of p in 0.50 < p < 0.81:

• The empirical result 20/30 is within the
“middle 90%” of outcomes

44

http://www.biyee.net

Back to Finding the Best Move

0.00 0.25 0.50 0.75 1.00
p

lik
el

ih
oo

d

c1: 10/10
b5: 6/10

• Given different moves, each with empirical winrate
• We can compute confidence intervals for true mean of

each move
• Goal: separate best move from all others
• Separation means:
• The whole confidence interval for the best move
• ... is above the intervals of all other moves

45

Back to Finding the Best Move

0.00 0.25 0.50 0.75 1.00
p

lik
el

ih
oo

d

c1: 100/100
b5: 63/100

• In practice, that often takes far too long
• In the UCB algorithm, we use the upper confidence bound

instead - the upper end of the confidence interval
• Details: next lecture

46

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search
	Statistical Analysis of Repeated Simulations

