Computing Science (CMPUT) 455

Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta
james.wrightQualberta.ca

Fall 2021

james.wright@ualberta.ca

455 Today - Lecture 13

Today’s topic: Understanding and improving simulations in
Go

Almost-random simulations in the Go3 program
Strengths and weaknesses

Bias and variance

¢ Improvements: filtering and selective move policies
Rules and patterns, MoGo patterns

Coursework

® Assignment 2:
® Resubmission (with 20% penalty) was due last night
® Marks by next week
¢ Reading: Rémi Coulom, Computing Elo Ratings of Move
Patterns in the Game of Go.
e Quiz 7: Simulations
® due Monday (Oct 25)

Scaling of Go3 vs Go2

Board size 5 x 5, komi 4.5
Simulations/move: 10, 20, 50, 100
Opponent: Go2 random player
Go3 clearly better than random

Player Wins %
Sim(10) 98% (+1.4)
Sim 100% (£0

(20))
Sim(50) 100% (£0)
Sim(100) 100% (=£0)

Simulation Speed in Go Revisited

e Example: 7 x 7 Go

¢ Playing one move in simulation is more complex in Go than
TicTacToe

e Simulation can be longer than 50 moves

e Many more legal moves than TicTacToe (almost 50 at start
of game)

e Example: 100 simulations/move: total
100 x 50 x 50 = 250, 000 simulated moves for making a
single move decision in opening

e To play whole 7 x 7 game:
many millions of simulated moves

Speed comparison: Go3 vs Fuego

e Speed comparison: 5x5 Go, empty board
® Fuego: http://fuego.sourceforge.net
open source C++ code

® Go3, almost-random simulations
® Speed: ~ 120 sim. / second

® Go3, rule-based simulations
® Speed: ~ 30-40 sim. / second

e Fuego MCTS, rule-based simulations plus tree search
® Speed: ~ 10,000 sim. / second
¢ About half of that time spent on simulations

® Go3 simulations are about 200 - 500 times slower

http://fuego.sourceforge.net

Uniformly Random Simulations in Go -
Strengths and Weaknesses

e | ast class: simulation-based player Go3
¢ How well does Go3 play Go?

Uniformly Random Simulations in Go -
Strengths and Weaknesses

e | ast class: simulation-based player Go3
¢ How well does Go3 play Go?

Strengths:

Can find many simple tactics

Can find sure wins near the end

Can avoid many simple blunders that the random player
may play

Improves with number of simulations, up to a limit

Uniformly Random Simulations in Go -
Strengths and Weaknesses

Weaknesses:

* Main weakness:
assumes that the opponent plays randomly...

e [t will play the moves that work best against random
e Those moves may fail against strong opponents
e Example: make a “silly threat”

® A strong opponent will answer the threat, no gain
* A random opponent will only answer with small probability

e Effect: the threat looks good in simulation

Uniformly Random Simulations in Go - Example
for Strength

¢ Black to play, 5.5 komi
e e2 is only winning move - kills

‘ whole white group
e c1 captures two stones, but is
! not enough to win
v

it

e With 100 simulations, Go3

B 4 Jilh clearly finds e2 is best

Win rates: e Weakness: program also thinks
(e2, 1.0), that bad moves c1 and c2 win
(c2, 0.75), ® |t does not matter in practice

(c1,0.72), ... since e2 is ranked higher

Uniformly Random Simulations in Go - Example

Continued

Win rates:
(e2, 0.98),
(a1, 0.36),
(c5, 0.36),...

Position after black mistake
playing c1

FlatMC now finds a win for
White very clearly

Simulations find that making two
eyes leads to win for White
Emergent good behavior,
achieved without any special
knowledge of how to make eyes

The simulations show the value
of this move

Uniformly Random Simulations in Go -
Example 3 - strength

¢ Black to play, 3.5 komi
e ¢5 is blunder, “self atari”
endangers three stones

¢ FlatMC can clearly see that €5 is
worse than other moves

¢ Winrate goes down since these
stones are often captured in

Win rates: simulations
(b5, 0.78), e Almost any other move wins
(a3, 0.55),... (b5 is best)

(e5, 0.29).

Uniformly Random Simulations in Go -
Example 4 - strength

¢ d6 is worth 2 points territory
(plus the stone played)

e d1is worth 1 extra point
® d3 is neutral, no extra points

e Strength: program gets correct
ordering of move values
v(d6) > v(d1) > v(d3)

Win rates: * Weakness: difference in
(d6, 0.86), winrates is not large...
(d1, 0.79), ¢ Lots of random noise from

(d3, 0.72),... plays after the first move

Uniformly Random Simulations in Go -
Example 5 - Weakness

e White to play, 1.5 komi

® b4 and a5 are silly threats, bad
moves, lose points

e Simulation player likes them best

e Against the random opponent in
the simulations,
these moves often work
e The quiet move at c4 would win
® However, its simulation winrate

v

Win rates: i low
Egg, 8:232)) e Why? My guess is that the

white corner group often dies
in simulation

Uniformly Random Simulations in Go -
Example 6 - Weakness

o e Simulations are over-optimistic
here

e White totally destroyed

e White still has > 30 % winrate in
random simulation

e I e White sometimes captures the
\H black stone d2 in the simulations
[and wins

Win rates: e e2,d1, e3 are all threats to
(e2, 0.34), capture d2 that:

(d1, 0.32), ® Fail against a competent
(e3, 0.3),... opponent

® Can work against random

ldeal Simulation vs Reality

An ideal simulation would preserve wins and losses exactly

® |f starting position is a win with best play by both:
— simulation is also a win
e [f starting position is a loss
— simulation is also a loss
This would imply:
e Each simulation is a perfect game
e Simulation gives a perfect evaluation function
That is VERY unrealistic!
* |f we know how to play a game perfectly,
we do not need any search or simulation...

What are properties of good simulations in practice?

Real Simulations - Mean, Bias and Variance

e Evaluate a state by doing n simulations
e Simulation i outcome is win (s; = 1) or loss (s; = 0)
e Evaluation = winrate (mean outcome) of simulations
e Mean outcome u of the simulations
o y= LS
e Variance
o var = 2’
¢ |deal playout: mean = minimax score, variance = 0
¢ Real playout: mean # minimax score, variance > 0
¢ Bias = Difference between mean and minimax score m
® bias = |m — u|

Bias vs Variance - What is More Important?

¢ Silver and Tesauro 2009: low bias is much more important
for good Monte Carlo simulations

¢ High bias: drift, result gets worse with more time steps in
simulation (left picture)

¢ High variance can be addressed by doing more
simulations (right picture)

sssssssssss

nnnnnnnnnnnnnnn

ANNANAAAAAARNY AN AN |

Improving Simulations

¢ Random simulations make many mistakes

e Random simulations have some systematic weaknesses,
causing bias and variance

¢ How to improve them?

¢ Answer from early Go program MoGo:

add game-specific filters and rules
¢ One way is to hardcode “obvious local replies”
e Goal: make the simulation more stable

e Safe stones and territories should remain safe
for the rest of the simulation

The MoGo Program

¢ MoGo was one of the first successful
Monte Carlo Go programs
® Developed around 2007/2008
* Won many competitions
* Won (high handicap) games vs human professionals
¢ Two main reasons for success:
® First Go program to use the UCT algorithm for Monte Carlo
Tree Search (later in this course)
* Improved playout policy by simple tactical rules and 3 x 3
patterns (this class)

Improving Go3 Almost-Random Policy

Go3 contains several ways to change the simulations
Improve on almost-random default simulations in Go3

Filter:
* Avoid some huge blunders in simulated games
® Examples:
® Do not fill eyes (already in Go3)
® New: avoid “selfatari”
Selective Move Policies:
® Find promising moves based on rules
® If promising moves exist:
ignore all other moves

20

Details on Filtering

A filter decides whether a move should be used or not
We have seen a simple filter already

Random players Go1, Go2 filter one point eyes

The Go3 default simulation policy also filters these
eye-filling moves

We can filter other bad moves, too

How does filtering work?

21

Simplest Filtering Algorithm

® Here, filter can be any move-checking function

¢ A checking function returns a boolean result -
should a move be filtered?

e Examples: eye-filling, selfatari, ...

def naiveGenerateMoveWithFilter () :
moves = generate_moves ()
for move in moves:
if filter (move) :
remove move from moves
if len (moves) > O:
return random.choice (moves)
else:
return None

22

More Efficient: Lazy Filtering

¢ Simple algorithm is inefficient
e Calls filter for all legal moves on the whole board
* Much faster way: pick random move first, then check

def filterMovesAndGenerate (moves) :
while len (moves) > 0:
candidate = random.choice (moves)
if filter(candidate):
remove candidate from moves
else:
return candidate
return None

def generateMoveWithFilter() :
moves = generate_moves ()
return filterMovesAndGenerate (moves)

23

Filtering - How to Efficiently Remove a Move

>>>
>>>
>>>
>>>
>>>

moves stored in Python list or array

How to remove move at some index i?

Slow way: move all elements i+1, i+2, ... down by
one

Much faster way: replace moves [i] by last element
moves[i] = moves[-1]

moves .pop ()

Note: much faster but changes order of list items

moves = [1,2,3,4,5,6,7,8,9]
i=2

moves[1i] = moves[—-1]
moves.pop ()

moves

2, 9, 4, 5, 6, 7, 8]

24

Filtering - How to Efficiently Remove a Move

>>>
>>>
>>>
>>>
>>>

moves stored in Python list or array
How to remove move at some index i?
Slow way: move all elements i+1, i+2, ... down by
one
Much faster way: replace moves [i] by last element
moves[i] = moves[-1]
moves .pop ()
Note: much faster but changes order of list items
® Question: does that matter?

moves = [1,2,3,4,5,6,7,8,9]
i=2

moves[1i] = moves[—-1]
moves.pop ()

moves

2, 9, 4, 5, 6, 7, 8]

24

Filters in Go3

e Always: filter eye-filling moves
e Optional: also filter selfatari moves

e Next slides:

* What is atari and selfatari?
* Implement the selfatari filter

25

Atari

¢ T
i

“Be in atari” means stones have only 1
liberty

“Give atari” means to reduce the opponent’s
stones to 1 liberty

Most direct form of threat in Go

e First picture: White e5
“gives atari on Black d5 and c5”

e d5 and c5 now have only one liberty at b5

® Second picture:
To defend, Black connects at b5

® Third picture: Black played elsewhere,
allowing White to capture on b5

26

Prevent Selfatari

e Selfatari means to reduce your own stones
to one liberty

* Most of the time, selfatari is a basic type of
blunder

e Stones c5, d5 have two liberties

e Bad move e5 Black takes away one liberty
e Three stones now have only one liberty

e Now White can capture three stones

27

Implementing Selfatari Filter

Two cases
e Case 1, as in example before

e Existing block with two liberties
® Own move fills one liberty

e Case 2, single stone selfatari

* New block, single stone
® Placed so that it has only one liberty

28

Selfatari Filter for Existing Block

def selfatari(block, move) :
move is on a liberty of block
oldNumLiberties = libertyCount (block)

if oldNumLiberties == 2:
play (move)
newNumLiberties = libertyCount (block)

undoMove ()
if newNumLiberties == 1:
return True
return False

e Existing block, play on own liberty
e Would it have only 1 liberty afterwards?

29

Single Stone Selfatari Filter

Move creates new block,
has no neighbors of own color

Move is not a capture
Stone has only 1 liberty

Usually, such moves are very bad,
only strengthen the opponent

Sometimes, such a move is a good
sacrifice

30

From Filters to Rules and Patterns

¢ Filters are one way to improve simulations
* Avoid moves that are typically bad
e We can also go the opposite way:
® Generate only moves that are typically good, urgent

e Rules and patterns follow this approach

31

Combining Rules and Filters

e \We can use both rules and filters
Example: rule selects move m, but it is eye-filling
Still filter such moves

Call filterMovesAndGenerate for list of rule-based
moves only

¢ |f one move survives the filter, play it

If all rule-based moves are filtered:

® Choose (with filtering) among remaining moves
* Implementation: see next slide

32

Rule-Based Randomized Playout

¢ Heuristic rule selects subset of all legal moves
e Choose randomly among those moves

def generateMoveWithRulesAndFilter () :

moves = ruleBasedGenerateMoves ()
move = filterMovesAndGenerate (moves)
if move != None:

return move
moves = generateOtherLegalMoves ()
return filterMovesAndGenerate (moves)

33

Examples of Rules

Atari Capture: Capture /ast opponent stone

Atari Defense: Save nearby own stones from capture
Capture any opponent stone

Extend number of liberties

Play “good shape” pattern

e Many more...

34

From Rules to Patterns

So far we looked mostly at tactical filters and rules
Those were based on liberties of blocks

Another choice: look at a small local area around move
Decide which moves are good or bad,

based on pattern of stones nearby

Example from original MoGo program:

3 x 3 and 2 x 3 patterns

35

MoGo Patterns - Idea

¢ Urgent response patterns
e Opponent just played move m
e Check empty points p near that move

e Up to 8 neighbors and diagonal
neighbors

e Check 3 x 3 area around p

¢ Pattern decides: should the program
play p with high priority?

¢ Point labeled with square in middle of
pattern: urgent MoGo pattern move

36

MoGo Patterns, Part 1

Fig. 5. Patterns for Hane. True is returned if any pattern is matched. In
the right one, a square on a black stone means true is returned if and only
if the eight positions around are matched and it is black to play.

X @Ox @OX

:E TR %o

KX

Fig. 6. Patterns for Cutl. The Cutl Move Pattern consists of three patterns.
True is returned when the first pattern is matched and the next two are not
matched.

37

MoGo Patterns, Part 2

Fig. 7. Pattern for Cut2. True is returned when the 6 upper positions are
matched and the 3 bottom positions are not white.

501801842
Y X' LN 'X'l! X 'X AN

Fig. 8. Patterns for moves on the Go board side. True is returned if any
pattern is matched. In the three right ones, a square on a black (resp. white)
stone means true is returned if and only if the positions around are matched
and it 1s black (resp. white) to play.

38

How were MoGo Patterns Found?

Why these moves and not others?
| don’t know for sure
Manual process, probably by trial and error

Most of these moves are urgent or “stabilizing” local
responses

¢ Soon we will study machine learning to replace the manual
process

39

Dealing with Symmetries

T b
S ek SRS

® Four operations can generate symmetrical patterns
2 rotations: 0 degrees, 90 degrees

2 vertical flips: don't flip, flip

2 horizontal flips: don't flip, flip

2 colors: don’t swap colors, swap colors (not shown)

40

Dealing with Symmetries

T b
S ek SR

Total 2 x 2 x 2 x 2 = 16 possible combinations of
operations

Each choice gives a different symmetry of the same
pattern

Self-symmetric patterns have fewer cases

Example: pattern can be equal to its flipped version

41

Programming MoGo-Style Patterns

Implementation from open source program Michi
Code in Go3, util/pattern.py

Also see https://github.com/pasky/michi
Table of patterns with different “wildcards”

Wildcards match more than one state on board - among
empty, black, white, off board

Expand wildcards to all matching 3 x 3 patterns

42

https://github.com/pasky/michi

Sample Pattern Definitions

["XOX", # hane pattern - enclosing hane

n n
o o e 7

"???"] ,

["XO.", # hane pattern - non-cutting hane

" n
o o . ’

"2.2"],

Codes:
e X = black stone
e O = white stone
e . =empty
e ? =any color

43

Expanding Wildcards Example

e Pattern with wildcard 2 matching any color

["?20X", # side pattern - cut
"X.O",

n n]

e Expanded - wildcard replaced by each possible color:

" XOX " " OOX " n . OX"
"X.O" "X.O" "X'O"

n n n n n n

44

Expanding Wildcards - Details

State of point:
X = black stone, 0 = white stone,
. = empty, " " = off board (for edge patterns)

Wildcards can stand for more than one color
e ? ="any color": X, O, .

® x ="notxX": 0, .

e o="noto" x, .

® pat3_expand:

® Expand all wildcards in a pattern
® Create list of full patterns without wildcards

Example on previous slide

45

MoGo Style Simulation Policy

e Use generateMoveWithRulesAndFilter ()
from a few slides ago, with pattern-based filter

® ruleBasedGenerateMoves ()
checks 3x3 patterns nearby

e filter () checks selfatari for pattern moves only

def ruleBasedGenerateMoves () :
patternMoves = []
for p in empty 8-neighbors of last move:
if 3x3-area around p matches a pattern:
patternMoves.append (p)

46

Go3 Player Revisited

Default Go3: Run with python3 Go3.py

Simple Monte Carlo Player
Almost-random simulations

¢ Filter eye-filling moves only
* No selective rules
* All legal moves (after filter) equally likely

Optional arguments: next slide

47

Options in Go3

e Number of simulations/move (default 10)
e Example: run with 100 simulations/move
® python3 Go3.py —-sim 100
* Move selection method (default simple)
® Example: use UCB for move selection
® python3 Go3.py -moveselect ucb
¢ Type of simulations (default random)

® Example: use rule-based simulations
® python3 Go3.py —-simrule rulebased

48

Summary

Pure random playouts have strengths,
but also systematic weaknesses

Simulations as evaluation: have bias and variance
Try to reduce errors by using filters and rule-based move
generation
e Examples of moves removed by filters:
® eye-filling moves
* selfatari
Example of rule-based move generation
® 3 x 3 pattern responses

49

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search

