
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca

455 Today - Lecture 13

• Today’s topic: Understanding and improving simulations in
Go
• Almost-random simulations in the Go3 program
• Strengths and weaknesses
• Bias and variance
• Improvements: filtering and selective move policies
• Rules and patterns, MoGo patterns

2

Coursework

• Assignment 2:
• Resubmission (with 20% penalty) was due last night
• Marks by next week

• Reading: Rémi Coulom, Computing Elo Ratings of Move
Patterns in the Game of Go.
• Quiz 7: Simulations

• due Monday (Oct 25)

3

Scaling of Go3 vs Go2

• Board size 5× 5, komi 4.5
• Simulations/move: 10, 20, 50, 100
• Opponent: Go2 random player
• Go3 clearly better than random

Player Wins %
Sim(10) 98% (±1.4)
Sim(20) 100% (±0)
Sim(50) 100% (±0)
Sim(100) 100% (±0)

4

Simulation Speed in Go Revisited

• Example: 7× 7 Go
• Playing one move in simulation is more complex in Go than

TicTacToe
• Simulation can be longer than 50 moves

• Many more legal moves than TicTacToe (almost 50 at start
of game)
• Example: 100 simulations/move: total

100× 50× 50 = 250,000 simulated moves for making a
single move decision in opening
• To play whole 7× 7 game:

many millions of simulated moves

5

Speed comparison: Go3 vs Fuego

• Speed comparison: 5x5 Go, empty board
• Fuego: http://fuego.sourceforge.net

open source C++ code
• Go3, almost-random simulations

• Speed: ≈ 120 sim. / second
• Go3, rule-based simulations

• Speed: ≈ 30-40 sim. / second
• Fuego MCTS, rule-based simulations plus tree search

• Speed: ≈ 10,000 sim. / second
• About half of that time spent on simulations

• Go3 simulations are about 200 - 500 times slower

6

http://fuego.sourceforge.net

Uniformly Random Simulations in Go -
Strengths and Weaknesses

• Last class: simulation-based player Go3
• How well does Go3 play Go?

Strengths:
• Can find many simple tactics
• Can find sure wins near the end
• Can avoid many simple blunders that the random player

may play
• Improves with number of simulations, up to a limit

7

Uniformly Random Simulations in Go -
Strengths and Weaknesses

• Last class: simulation-based player Go3
• How well does Go3 play Go?

Strengths:
• Can find many simple tactics
• Can find sure wins near the end
• Can avoid many simple blunders that the random player

may play
• Improves with number of simulations, up to a limit

7

Uniformly Random Simulations in Go -
Strengths and Weaknesses

Weaknesses:
• Main weakness:

assumes that the opponent plays randomly...
• It will play the moves that work best against random
• Those moves may fail against strong opponents
• Example: make a “silly threat”

• A strong opponent will answer the threat, no gain
• A random opponent will only answer with small probability

• Effect: the threat looks good in simulation

8

Uniformly Random Simulations in Go - Example
for Strength

Win rates:
(e2, 1.0),
(c2, 0.75),
(c1, 0.72), ...

• Black to play, 5.5 komi
• e2 is only winning move - kills

whole white group
• c1 captures two stones, but is

not enough to win
• With 100 simulations, Go3

clearly finds e2 is best
• Weakness: program also thinks

that bad moves c1 and c2 win
• It does not matter in practice

since e2 is ranked higher

9

Uniformly Random Simulations in Go - Example
Continued

Win rates:
(e2, 0.98),
(a1, 0.36),
(c5, 0.36),...

• Position after black mistake
playing c1
• FlatMC now finds a win for

White very clearly
• Simulations find that making two

eyes leads to win for White
• Emergent good behavior,

achieved without any special
knowledge of how to make eyes
• The simulations show the value

of this move

10

Uniformly Random Simulations in Go -
Example 3 - strength

Win rates:
(b5, 0.78),
(a3, 0.55),...
(e5, 0.29).

• Black to play, 3.5 komi
• e5 is blunder, “self atari”

endangers three stones
• FlatMC can clearly see that e5 is

worse than other moves
• Winrate goes down since these

stones are often captured in
simulations
• Almost any other move wins

(b5 is best)

11

Uniformly Random Simulations in Go -
Example 4 - strength

Win rates:
(d6, 0.86),
(d1, 0.79),
(d3, 0.72),...

• d6 is worth 2 points territory
(plus the stone played)
• d1 is worth 1 extra point
• d3 is neutral, no extra points
• Strength: program gets correct

ordering of move values
v(d6) > v(d1) > v(d3)
• Weakness: difference in

winrates is not large...
• Lots of random noise from

plays after the first move

12

Uniformly Random Simulations in Go -
Example 5 - Weakness

Win rates:
(b4, 0.35),
(a5, 0.24),...

• White to play, 1.5 komi
• b4 and a5 are silly threats, bad

moves, lose points
• Simulation player likes them best
• Against the random opponent in

the simulations,
these moves often work
• The quiet move at c4 would win
• However, its simulation winrate

is low
• Why? My guess is that the

white corner group often dies
in simulation

13

Uniformly Random Simulations in Go -
Example 6 - Weakness

Win rates:
(e2, 0.34),
(d1, 0.32),
(e3, 0.3),...

• Simulations are over-optimistic
here
• White totally destroyed
• White still has > 30 % winrate in

random simulation
• White sometimes captures the

black stone d2 in the simulations
and wins
• e2, d1, e3 are all threats to

capture d2 that:
• Fail against a competent

opponent
• Can work against random

14

Ideal Simulation vs Reality

• An ideal simulation would preserve wins and losses exactly

• If starting position is a win with best play by both:
→ simulation is also a win

• If starting position is a loss
→ simulation is also a loss

• This would imply:
• Each simulation is a perfect game
• Simulation gives a perfect evaluation function

• That is VERY unrealistic!
• If we know how to play a game perfectly,

we do not need any search or simulation...
• What are properties of good simulations in practice?

15

Real Simulations - Mean, Bias and Variance

• Evaluate a state by doing n simulations
• Simulation i outcome is win (si = 1) or loss (si = 0)
• Evaluation = winrate (mean outcome) of simulations
• Mean outcome µ of the simulations

• µ =
∑

si
n

• Variance
• var =

∑
(si−µ)2

n

• Ideal playout: mean = minimax score, variance = 0
• Real playout: mean 6= minimax score, variance > 0
• Bias = Difference between mean and minimax score m

• bias = |m − µ|

16

Bias vs Variance - What is More Important?

• Silver and Tesauro 2009: low bias is much more important
for good Monte Carlo simulations
• High bias: drift, result gets worse with more time steps in

simulation (left picture)
• High variance can be addressed by doing more

simulations (right picture)

17

Improving Simulations

• Random simulations make many mistakes
• Random simulations have some systematic weaknesses,

causing bias and variance
• How to improve them?
• Answer from early Go program MoGo:

add game-specific filters and rules
• One way is to hardcode “obvious local replies”
• Goal: make the simulation more stable

• Safe stones and territories should remain safe
for the rest of the simulation

18

The MoGo Program

• MoGo was one of the first successful
Monte Carlo Go programs
• Developed around 2007/2008
• Won many competitions
• Won (high handicap) games vs human professionals

• Two main reasons for success:
• First Go program to use the UCT algorithm for Monte Carlo

Tree Search (later in this course)
• Improved playout policy by simple tactical rules and 3× 3

patterns (this class)

19

Improving Go3 Almost-Random Policy

• Go3 contains several ways to change the simulations
• Improve on almost-random default simulations in Go3
• Filter:

• Avoid some huge blunders in simulated games
• Examples:

• Do not fill eyes (already in Go3)
• New: avoid “selfatari”

• Selective Move Policies:
• Find promising moves based on rules
• If promising moves exist:

ignore all other moves

20

Details on Filtering

• A filter decides whether a move should be used or not
• We have seen a simple filter already
• Random players Go1, Go2 filter one point eyes
• The Go3 default simulation policy also filters these

eye-filling moves
• We can filter other bad moves, too
• How does filtering work?

21

Simplest Filtering Algorithm

• Here, filter can be any move-checking function
• A checking function returns a boolean result -

should a move be filtered?
• Examples: eye-filling, selfatari, ...

def naiveGenerateMoveWithFilter():
moves = generate_moves()
for move in moves:

if filter(move):
remove move from moves

if len(moves) > 0:
return random.choice(moves)

else:
return None

22

More Efficient: Lazy Filtering

• Simple algorithm is inefficient
• Calls filter for all legal moves on the whole board
• Much faster way: pick random move first, then check

def filterMovesAndGenerate(moves):
while len(moves) > 0:

candidate = random.choice(moves)
if filter(candidate):

remove candidate from moves
else:

return candidate
return None

def generateMoveWithFilter():
moves = generate_moves()
return filterMovesAndGenerate(moves)

23

Filtering - How to Efficiently Remove a Move

• moves stored in Python list or array
• How to remove move at some index i?
• Slow way: move all elements i+1, i+2,... down by

one
• Much faster way: replace moves[i] by last element
moves[i] = moves[-1]
moves.pop()
• Note: much faster but changes order of list items

• Question: does that matter?

>>> moves = [1,2,3,4,5,6,7,8,9]
>>> i=2
>>> moves[i] = moves[-1]
>>> moves.pop()
>>> moves
[1, 2, 9, 4, 5, 6, 7, 8]

24

Filtering - How to Efficiently Remove a Move

• moves stored in Python list or array
• How to remove move at some index i?
• Slow way: move all elements i+1, i+2,... down by

one
• Much faster way: replace moves[i] by last element
moves[i] = moves[-1]
moves.pop()
• Note: much faster but changes order of list items

• Question: does that matter?

>>> moves = [1,2,3,4,5,6,7,8,9]
>>> i=2
>>> moves[i] = moves[-1]
>>> moves.pop()
>>> moves
[1, 2, 9, 4, 5, 6, 7, 8]

24

Filters in Go3

• Always: filter eye-filling moves
• Optional: also filter selfatari moves
• Next slides:

• What is atari and selfatari?
• Implement the selfatari filter

25

Atari

• “Be in atari” means stones have only 1
liberty
• “Give atari” means to reduce the opponent’s

stones to 1 liberty
• Most direct form of threat in Go

• First picture: White e5
“gives atari on Black d5 and c5”

• d5 and c5 now have only one liberty at b5
• Second picture:

To defend, Black connects at b5
• Third picture: Black played elsewhere,

allowing White to capture on b5

26

Prevent Selfatari

• Selfatari means to reduce your own stones
to one liberty
• Most of the time, selfatari is a basic type of

blunder
• Stones c5, d5 have two liberties
• Bad move e5 Black takes away one liberty
• Three stones now have only one liberty
• Now White can capture three stones

27

Implementing Selfatari Filter

Two cases
• Case 1, as in example before

• Existing block with two liberties
• Own move fills one liberty

• Case 2, single stone selfatari
• New block, single stone
• Placed so that it has only one liberty

28

Selfatari Filter for Existing Block

def selfatari(block, move):
move is on a liberty of block
oldNumLiberties = libertyCount(block)
if oldNumLiberties == 2:

play(move)
newNumLiberties = libertyCount(block)
undoMove()
if newNumLiberties == 1:

return True
return False

• Existing block, play on own liberty
• Would it have only 1 liberty afterwards?

29

Single Stone Selfatari Filter

• Move creates new block,
has no neighbors of own color
• Move is not a capture
• Stone has only 1 liberty
• Usually, such moves are very bad,

only strengthen the opponent
• Sometimes, such a move is a good

sacrifice

30

From Filters to Rules and Patterns

• Filters are one way to improve simulations
• Avoid moves that are typically bad

• We can also go the opposite way:
• Generate only moves that are typically good, urgent

• Rules and patterns follow this approach

31

Combining Rules and Filters

• We can use both rules and filters
• Example: rule selects move m, but it is eye-filling
• Still filter such moves
• Call filterMovesAndGenerate for list of rule-based

moves only
• If one move survives the filter, play it
• If all rule-based moves are filtered:

• Choose (with filtering) among remaining moves
• Implementation: see next slide

32

Rule-Based Randomized Playout

• Heuristic rule selects subset of all legal moves
• Choose randomly among those moves

def generateMoveWithRulesAndFilter():
moves = ruleBasedGenerateMoves()
move = filterMovesAndGenerate(moves)
if move != None:

return move
moves = generateOtherLegalMoves()
return filterMovesAndGenerate(moves)

33

Examples of Rules

• Atari Capture: Capture last opponent stone
• Atari Defense: Save nearby own stones from capture
• Capture any opponent stone
• Extend number of liberties
• Play “good shape” pattern
• Many more...

34

From Rules to Patterns

• So far we looked mostly at tactical filters and rules
• Those were based on liberties of blocks
• Another choice: look at a small local area around move
• Decide which moves are good or bad,

based on pattern of stones nearby
• Example from original MoGo program:

3× 3 and 2× 3 patterns

35

MoGo Patterns - Idea

• Urgent response patterns
• Opponent just played move m
• Check empty points p near that move
• Up to 8 neighbors and diagonal

neighbors
• Check 3× 3 area around p
• Pattern decides: should the program

play p with high priority?
• Point labeled with square in middle of

pattern: urgent MoGo pattern move

36

MoGo Patterns, Part 1

37

MoGo Patterns, Part 2

38

How were MoGo Patterns Found?

• Why these moves and not others?
• I don’t know for sure
• Manual process, probably by trial and error
• Most of these moves are urgent or “stabilizing” local

responses
• Soon we will study machine learning to replace the manual

process

39

Dealing with Symmetries

• Four operations can generate symmetrical patterns
• 2 rotations: 0 degrees, 90 degrees
• 2 vertical flips: don’t flip, flip
• 2 horizontal flips: don’t flip, flip
• 2 colors: don’t swap colors, swap colors (not shown)

40

Dealing with Symmetries

• Total 2× 2× 2× 2 = 16 possible combinations of
operations
• Each choice gives a different symmetry of the same

pattern
• Self-symmetric patterns have fewer cases
• Example: pattern can be equal to its flipped version

41

Programming MoGo-Style Patterns

• Implementation from open source program Michi
• Code in Go3, util/pattern.py

• Also see https://github.com/pasky/michi

• Table of patterns with different “wildcards”
• Wildcards match more than one state on board - among

empty, black, white, off board
• Expand wildcards to all matching 3× 3 patterns

42

https://github.com/pasky/michi

Sample Pattern Definitions

["XOX", # hane pattern - enclosing hane
"...",
"???"],

["XO.", # hane pattern - non-cutting hane
"...",
"?.?"],

Codes:
• X = black stone
• O = white stone
• . = empty
• ? = any color

43

Expanding Wildcards Example

• Pattern with wildcard ? matching any color

["?OX", # side pattern - cut
"X.O",
" "]

• Expanded - wildcard replaced by each possible color:

"XOX" "OOX" ".OX"
"X.O" "X.O" "X.O"
" " " " " "

44

Expanding Wildcards - Details

• State of point:
X = black stone, O = white stone,
. = empty, " " = off board (for edge patterns)
• Wildcards can stand for more than one color
• ? = "any color": X, O, .
• x = "not X": O, .
• o = "not O": X, .
• pat3_expand:

• Expand all wildcards in a pattern
• Create list of full patterns without wildcards

• Example on previous slide

45

MoGo Style Simulation Policy

• Use generateMoveWithRulesAndFilter()
from a few slides ago, with pattern-based filter
• ruleBasedGenerateMoves()

checks 3x3 patterns nearby
• filter() checks selfatari for pattern moves only

def ruleBasedGenerateMoves():
patternMoves = []
for p in empty 8-neighbors of last move:

if 3x3-area around p matches a pattern:
patternMoves.append(p)

...

46

Go3 Player Revisited

• Default Go3: Run with python3 Go3.py

• Simple Monte Carlo Player
• Almost-random simulations

• Filter eye-filling moves only
• No selective rules
• All legal moves (after filter) equally likely

• Optional arguments: next slide

47

Options in Go3

• Number of simulations/move (default 10)
• Example: run with 100 simulations/move
• python3 Go3.py -sim 100

• Move selection method (default simple)
• Example: use UCB for move selection
• python3 Go3.py -moveselect ucb

• Type of simulations (default random)
• Example: use rule-based simulations
• python3 Go3.py -simrule rulebased

48

Summary

• Pure random playouts have strengths,
but also systematic weaknesses
• Simulations as evaluation: have bias and variance
• Try to reduce errors by using filters and rule-based move

generation
• Examples of moves removed by filters:

• eye-filling moves
• selfatari

• Example of rule-based move generation
• 3× 3 pattern responses

49

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search

