
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca


Part III

Simulations and Monte Carlo Tree
Search

2



455 Today - Lecture 12

• Start Part 3 - Simulations and Monte Carlo Tree Search
• Simulation methods in computing science
• Early examples simulating physics
• Examples in heuristic search
• Flat Monte Carlo
• Simulation-based TicTacToe player
• Simulation-based Go player, Go3

3



Coursework

• Assignment 2:
• Feedback by end of today (via email)
• Resubmission (with 20% penalty) due Wednesday at

11:55pm
• Reading: Rémi Coulom, Computing Elo Ratings of Move

Patterns in the Game of Go.
• Lecture 12 activities
• Quiz 7: Simulations

• due Monday (Oct 25)

4



CMPUT 497 Plug (Winter 2022)

CMPUT 497 — Artificial Intelligence Capstone, F3

Students will experience the challenges, and rewards, of
working in a team to address a real-world task, related to
artificial intelligence or machine learning. This will involve first
identifying the task itself, then iteratively addressing relevant
issues (typically with feedback from a domain expert), leading
to an implementation and culminating in evaluating that system.
Students will also learn about best practices in organizing team
projects, as well as important information about effective
communication.

Instructor: Russ Greiner
Prerequisites: ONE OF CMPUT 267, 365, or 366.
• Note: best to take this capstone course after completing all

of these.
5

https://docs.google.com/document/d/1Rk6UO7QNxuyLckvwhZ8qkzWto2Rz5IMgFB_rhIzEDrM/


Simulation Methods

6



Simulation Methods

• Wikipedia definition:
Simulation is the imitation of the operation of a real-
world process or system over time.

• Huge number and variety of applications
• Here, we focus on Monte Carlo (MC) simulation
• Main idea: learn information

from random sequences of decision steps
• First simple examples:

• No real sequence, just a single random step
• That step is repeated many times

for the same decision problem

7



Example 1: Estimate π with Monte Carlo

Image source: https://upload.

wikimedia.org/wikipedia

• Generate random point (x, y)
in [0,1)× [0,1) square
• Check if within circle:

x2 + y2 < 1
• Repeat many times
• Fraction of points within circle is

estimate for its area, π/4
• See code estimate_pi.py

and do Activity 12a

8

https://upload.wikimedia.org/wikipedia
https://upload.wikimedia.org/wikipedia


Example 2: Numerical Integration
with Monte Carlo Sampling

Image source:

http://cedric-augonnet.com

• Numerical Integration
• Similar idea as with π example
• Given arbitrary function f
• Count fraction of random points

“under the curve”
• Need to find enclosing rectangle
• Deal with negative function values
• Demo of code
numerical_integration_MC.py

9

http://cedric-augonnet.com


Discussion - Monte Carlo Sampling for
Numerical Integration

• Very general method
• No assumptions on type of function to integrate
• Can also use it in higher dimensions

• Example in Activity 12a: volume of unit ball
• Can estimate volume of irregularly shaped object

• All you need is:
• Bounding box containing object
• Random point generator
• Reasonably fast method to check if point is

inside or outside the object

10



Discussion continued - Limitations

Limitations
• Convergence of the basic method is slow

• High variance (but no bias)
• Much faster methods exist if:

• Functions have “nice” properties such as smoothness
• Decades of work on specialized MC methods
• Basic Monte Carlo (MC) is a fall-back

for cases without “nice” structure

11



Origins of Monte Carlo Method -
Manhattan Project

Image source: http:

//www.nuclear-power.net

• 1940’s Manhattan Project:
developed the first atomic bombs
• Extremely complex physics

modeling required
• First computers were just

becoming available
• One key problem:

Neutron diffusion

12

http://www.nuclear-power.net
http://www.nuclear-power.net


Neutron Diffusion

Image source: http:

//www.nuclear-power.net

• To obtain a nuclear chain reaction:
• Each neutron must create >1

neutron, before being absorbed
• Physicists could not solve this

problem with “pure calculation”
• Ulam and von Neumann

developed first Markov Chain
Monte Carlo simulation methods
• Simulate many random neutrons

flying through a substance
• Count how often new ones are

generated in simulation

13

http://www.nuclear-power.net
http://www.nuclear-power.net


Markov Chain Monte Carlo

Image source:

bougui505.github.io/

python/2014/11/17/

simple-markov-chain-monte-carlo-mcmc-algorithm-in-python.

html

• Main idea:
simulate random walk of particles
• Walk is biased by physics constraints
• Particle distribution approximates...
• ...true distribution of what should be

measured
• Very popular in physics, engineering

for modeling complex systems

14

bougui505.github.io/python/2014/11/17/simple-markov-chain-monte-carlo-mcmc-algorithm-in-python.html
bougui505.github.io/python/2014/11/17/simple-markov-chain-monte-carlo-mcmc-algorithm-in-python.html
bougui505.github.io/python/2014/11/17/simple-markov-chain-monte-carlo-mcmc-algorithm-in-python.html
bougui505.github.io/python/2014/11/17/simple-markov-chain-monte-carlo-mcmc-algorithm-in-python.html


Markov Chain Monte Carlo

Image source:

https://en.wikipedia.org/wiki/

Path_tracing

• Application:
image rendering by path tracing
• Each light source emits many

photons
• Many light rays sent out in

random directions from source
• Model the physics of reflection,

absorption etc. of those particles
• Number of particles hitting an

area gives its illumination

15

https://en.wikipedia.org/wiki/Path_tracing
https://en.wikipedia.org/wiki/Path_tracing


Simulation Model

• To simulate something we need a model
• Neutron diffusion: physics - laws of motion, speed of

neutrons, absorption by different materials, radioactive
decay of different uranium isotopes,...
• Path tracing: light sources, laws of optics, shadows,

reflection/light scattering, indirect light, ...
• Games:

legal moves, outcome at the end
• Games with chance:

simulated dice throws,
possible distributions of unknown cards,...

16



Garbage In - Garbage Out Principle (GIGO)

• A simulation can only be as good
as the underlying model
• If you feed great data to an invalid model,

you typically get garbage
• Examples:

• Missing relevant physics
• Wrong initial conditions
• Numerical instability, cascading errors
• Bugs in computer code and/or hardware
• Not implementing the rules of Go properly

17



Simulation in Heuristic Search

18



Simulation and Random Walks
in Heuristic Search

• Early application: GSAT and WalkSAT for Boolean
Satisfiability Problem (SAT)
• Given a boolean formula
• Example: (x0 ∨ x2) ∧ (¬x1 ∨ ¬x2)

• Check if it is satisfiable: an assignment of true and false to
the variables which makes the formula true
• Example: Set x0 = True, x1 = False, x2 = False
• Whole formula becomes true
• Solving large SAT formulas is a difficult problem (NP-Hard!)
• Best solvers use heuristic search

19



Solving SAT by Systematic Search

• Given SAT formula with n variables, x0, ...xn−1

• Can solve by systematic search, trial and error
• Set x0 = True

• Simplify formula
• Solve SAT problem with n − 1 variables

• If fail: Set x0 = False
• Simplify formula
• Solve SAT problem with n − 1 variables

• Question: What is the worst-case cost of this procedure?

• Worst case cost: exponential in n
• Need to try many of the 2n variable assignments

20



Solving SAT by Systematic Search

• Given SAT formula with n variables, x0, ...xn−1

• Can solve by systematic search, trial and error
• Set x0 = True

• Simplify formula
• Solve SAT problem with n − 1 variables

• If fail: Set x0 = False
• Simplify formula
• Solve SAT problem with n − 1 variables

• Question: What is the worst-case cost of this procedure?
• Worst case cost: exponential in n

• Need to try many of the 2n variable assignments

20



GSAT and WalkSAT:
Solving SAT by Biased Random Walk

• Local search methods developed in 1990’s
• Start with random assignment of True or False to each

variable
• If formula is true: stop, success
• If not, use heuristics to flip value of one variable
• Balance exploitation and exploration

• Exploitation: flip a variable that makes the “largest possible
improvement” of the formula

• Question: What could “improvement” mean?

• Exploration: flip a random variable
• Restart if no progress for a while

• How does local search compare to systematic search?
• No clear winner, different strengths/weaknesses

21



GSAT and WalkSAT:
Solving SAT by Biased Random Walk

• Local search methods developed in 1990’s
• Start with random assignment of True or False to each

variable
• If formula is true: stop, success
• If not, use heuristics to flip value of one variable
• Balance exploitation and exploration

• Exploitation: flip a variable that makes the “largest possible
improvement” of the formula

• Question: What could “improvement” mean?
• Exploration: flip a random variable

• Restart if no progress for a while

• How does local search compare to systematic search?
• No clear winner, different strengths/weaknesses

21



GSAT and WalkSAT:
Solving SAT by Biased Random Walk

• Local search methods developed in 1990’s
• Start with random assignment of True or False to each

variable
• If formula is true: stop, success
• If not, use heuristics to flip value of one variable
• Balance exploitation and exploration

• Exploitation: flip a variable that makes the “largest possible
improvement” of the formula

• Question: What could “improvement” mean?
• Exploration: flip a random variable

• Restart if no progress for a while
• How does local search compare to systematic search?

• No clear winner, different strengths/weaknesses

21



Simulation in Game Tree Search - Backgammon

Image sources:

www.backgammoned.net

• Early success of simulation
methods in games:
Backgammon
• “Rollout” games with many

different sequences of dice
throws
• Play move that is most

successful in these rollouts
• Backgammon was also an early

success story for neural
networks
We will discuss that story later

22

www.backgammoned.net


Simulation in Backgammon

Image sources: www.bkgm.com/gnu/

AllAboutGNU.html

• Picture: simulation result of all
possible dice throws
• white = good winrate, red = bad
• Right side: risky move

• Many throws lead to sure win
• Many other throws lead to sure

loss
• Left side: safe move

• Outcomes more similar
• Here, this move is better in

expectation
• Knowing this distribution allows

you to make better decisions

23

www.bkgm.com/gnu/AllAboutGNU.html
www.bkgm.com/gnu/AllAboutGNU.html


From Games With Chance Elements
to Games With No Chance

• Games with chance element (dice, hidden cards)
• Using random simulations is a natural idea
• Tried even in the earliest programs

• Games without chance element
(chess, checkers, Go,...)
• Using random simulations is much less natural
• It took a lot longer to develop those methods
• Often, it also works very well
• Our first example: TicTacToe
• Second example: Go

24



Random Simulation in TicTacToe

• From given state, finish game
with moves selected uniformly at random
• In TicTacToe, all empty squares are legal moves
• End simulation when game is over by rules:

• Three in a row
• Board full

• Implementation: method simulate(self)
• In file tic_tac_toe.py

25



Method TicTacToe.simulate()

def simulate(self):
allMoves = self.legalMoves()
random.shuffle(allMoves)
i = 0
while not self.endOfGame():

self.play(allMoves[i])
i += 1

return self.winner(), i

Implementation note:
• For random play in TicTacToe, it’s enough to shuffle the list

of moves once, then play in that order
• Not true in Go (why?)

26



Method TicTacToe.simulate()

def simulate(self):
allMoves = self.legalMoves()
random.shuffle(allMoves)
i = 0
while not self.endOfGame():

self.play(allMoves[i])
i += 1

return self.winner(), i

Implementation note:
• For random play in TicTacToe, it’s enough to shuffle the list

of moves once, then play in that order
• Not true in Go (why?)

26



Use Simulations as Evaluation Function

Evaluate: how good is a game state?
• Exact answer:

• Run solver
• Compute minimax value

• Heuristic, first (old) answer:
• Run depth-limited alphabeta search
• At depth limit: call heuristic evaluation function
• Compute minimax value
• Problem: how to create evaluation function?

• Heuristic, second (new) answer:
• Run simulations, score final result

• Win = 1, loss = 0 (draw = 0.5)
• Compute winrate over all simulations

27



Simulation-Based Player

• Uses 1-step (1-ply) lookahead to evaluate all moves
• For each legal move:

• Run n simulations
• Measure the winrate (winning percentage)

for these simulations
• After all simulations:

• Play move with highest winrate
• Implementation: simulation_player.py

28



Flat Monte Carlo

• The method based on 1-ply lookahead + simulations is
sometimes called Flat Monte Carlo
• Monte Carlo method: uses random simulations
• Flat: does not build a deep tree,

only 1 ply (1 move) lookahead
• Contrast: Monte Carlo Tree Search

builds a (often very deep) tree

29



Simulation Player Implementation - simulate

SimulationPlayer.simulate(self, state, move)

• Play move from given state - changes state
• Evaluate state after the move:
• Run self.numSimulations from it
• After simulations: undoMove to restore previous state
• Evaluation of move:

average outcome of these simulations

30



SimulationPlayer.simulate

def simulate(self, state, move):
stats = [0] * 3
state.play(move)
moveNr = state.moveNumber()
for _ in range(self.numSimulations):

winner, _ = state.simulate()
stats[winner] += 1
state.resetToMoveNumber(moveNr)

state.undoMove()
eval = (stats[BLACK] + 0.5 * stats[EMPTY])

/ self.numSimulations
if state.toPlay == WHITE:

eval = 1 - eval # Negamax view
return eval

31



Simulation Player Implementation - genmove

• SimulationPlayer.genmove(self, state)

• For each move: Evaluate it by simulation
• Collect and compare winrates for all moves
• Pick the move with best winrate

32



SimulationPlayer.genmove

def genmove(self, state):
moves = state.legalMoves()
numMoves = len(moves)
score = [0] * numMoves
for i in range(numMoves):

move = moves[i]
score[i] = self.simulate(state, move)

bestIndex = score.index(max(score))
best = moves[bestIndex]
return best

33



Simulation-Based Player

34



Match Simulation-Based Player
vs Perfect and Random Players

• simulation_player.py
• perfect_player.py

solves game at each step
• random_player.py

selects move uniformly at random
• play_match.py run test games, print statistics
• How do these players compare?
• How does the strength of the Simulation Player change

if we increase the number of simulations?

35



Match 1: 10 simulations/move,
100 games each color

• Results in table:
• Black player (X, name on left side)
• Result vs White player (O, name on top)

• Perfect player never loses with either color
• Going first is a big advantage

(unless both are perfect)
• Note: numbers will change if re-run,

but results will be similar with high probability

Table: Wins/Draws/Losses (W/D/L), 10 simulations/move, 100 games
each color.

Black Sim(10) Perfect Random
Sim(10) 62W/21D/17L 0W/76D/24L 97W/3D/0L
Perfect 77W/23D/0L 0W/100D/0L 100W/0D/0L
Random 9W/5D/86L 0W/20D/80L 64W/7D/29L

36



Scaling of Simulation Player vs Perfect

• Vary number of simulations 1, 10, 100, 1000
• Separate stats as Black, as White
• Results for Random and Perfect added for comparison
• Increasing simulations clearly helps
• 1000 simulations/move seem to play almost perfectly?
• Activity 12b: re-try this experiment, run more games
• TicTacToe is simple. In Go, Sim(1000) still plays poorly

Player As Black % As White %
Random 0W/20D/80L 10% 0W/0D/100L 0%
Sim(1) 0W/19D/81L 9.5% 0W/7D/93L 3.5%
Sim(10) 0W/80D/20L 40% 0W/24D/76L 12%
Sim(100) 0W/100D/0L 50% 0W/77D/23L 38.5%
Sim(1000) 0W/100D/0L 50% 0W/100D/0L 50%
Perfect 0W/100D/0L 50% 0W/100D/0L 50%

37



Scaling Simulation Player vs Random

• Vary number of simulations 1, 10, 100, 1000
• Separate stats as Black, as White
• Results for Random and Perfect added for comparison
• Increasing simulations clearly helps
• Sim(1000) as white better than perfect???

Player As Black % As White %
Random 64W/7D/29L 67.5% 29W/7D/64L 32.5%
Sim(1) 82W/9D/9L 86.5% 63W/15D/22L 70.5%
Sim(10) 97W/1D/2L 97.5% 78W/8D/14L 82%
Sim(100) 99W/1D/0L 99.5% 88W/9D/3L 92.5%
Sim(1000) 97W/3D/0L 98.5% 91W/5D/4L 93.5%
Perfect 100W/0D/0L 100% 80W/20D/0L 90%

38



Comments on Experiments

• 100 games is not enough to get precise numbers
• Still large statistical error
• Enough to get a rough first idea

• Benefit of more simulations is clear
• Does it play perfectly?

• In TicTacToe, maybe close to perfect
• In harder games like Go, not at all

39



Comments on Experiments (2)

• Sim(1000) can exploit Random better than the perfect
player
• Confirmed with 1000 games - see below
• Probable reason:
• Tie-breaking towards moves that are more successful in

random simulations
• Optional activity: write a perfect player with

simulation-based tiebreaking

Player As Black %
Sim(1000) 988W/12D/0L 99.4%
Perfect 991W/9D/0L 99.55%

Player As White %
Sim(1000) 908W/59D/33L 93.75%
Perfect 799W/201D/0L 89.95%

40



Go3 - Simulation-Based Go Players

• Go3 implements several variations of simulation-based
players
• All choose their best move based on success in

simulations
• Go3 implements two different simulation policies
• Go3 implements two different move selection algorithms

at the root
• Go4 will have even more simulation policies

41



Simulations in Go3

• As in TicTacToe, simulations used as state evaluation
• Use simulations to finish game many times from current

position
• Keep winrate statistics to evaluate state
• How to do simulation in Go?
• Two simulation methods implemented in Go3

• Almost-random
• Rule-based (discussed later)

42



Almost-Random Simulations in Go3

• Remember Go1 and Go2, random Go players
• Selected moves uniformly at random

• Except: do not fill one-point eyes
• Almost-random simulation in Go3 works the same way
• It will choose almost-random moves in its simulations
• Filter eye-filling moves only
• Pick all other moves with equal probability
• Pass in simulation only if all board moves are eye-filling

43



Move Selection in Go3

• Two algorithms: simple and UCB
• Simple is the same as in simulation_player.py

• For each move, try n simulations starting with this move
• Second algorithm is UCB (later)

• Smarter choice of which moves to simulate more often

44



Simple Move Selection Details

• For each legal move mi
• Play mi
• Run n random simulations
• Undo move mi
• Count number of wins wi
• Compute winrate wi/n

• Play the move with maximum
winrate
• move = argmaxi wi/n
• Difference to TicTacToe:

• Legal moves include pass

45



Pass in Simulation vs Pass in Game

Simulations
• Regarding passing, behave like Go1 and Go2

• No pass except at very end to avoid filling eyes

Move selection for player
• Go3 player move selection is different from simulations,
Go1 and Go2

• In Go, pass is always legal
• Go3 player can pass earlier if it has the best winrate
• Examples:

• All moves on board are bad tactically
• All moves on board are in own or opponent territory

46



Simulation Speed in Go vs TicTacToe

• Speed in Go is quite slow
• Simulations take much longer than in TicTacToe
• Max. 9 moves in TicTacToe
• Roughly n × n on board size n in the opening
• Example: 7× 7 Go
• Simulation can be longer than 50 moves
• Reason:

• Capture large blocks
• Play back onto those newly empty points

47



Summary

• Simulation methods:
• Approximate a quantity that is difficult to compute otherwise
• Example: physics
• Example: evaluation of game states

• Monte Carlo simulation - random sequences of actions
• First example - TicTacToe

• Approaches (almost?) perfect play with enough simulations
• Second example - Go

• Much better than random, but far from a good player

48


	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Simulations and Monte Carlo Tree Search
	Simulation Methods
	Simulation in Heuristic Search


