
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca


Today’s Topics - Lecture 11

• Midterm results
• Quiz 5 review
• Quiz 6 review
• Defining and using knowledge in heuristic search
• State evaluation
• Move evaluation

2



Coursework

• Assignment 2: due Monday, Oct 18 (i.e.,next Monday!)
• Quiz 7: due Monday, Oct 25 (i.e., not next Monday)

• Topic: Simulations (lecture 12)
• Read van der Werf et al., Solving Go on small boards

3



Midterm Statistics

• 78 attempts, average 77.7%

Won’t review questions:
• In-class: Everyone got different questions
• eClass: We reuse some questions from year to year

4



Quiz 5 Review

• Quiz 5, Minimax search
• 91 (!) attempts. Average grade: 87%
• Lowest scores: Q15: 72.5%, Q16: 56%

5



Quiz 5 Review: Q15

Q15 For games with only two outcomes (win-loss), how do
boolean negamax and standard alphabeta search as in
alphabeta.py compare in terms of pruning power? Assume
that in alphabeta, a win is represented by +1 and a loss
by -1.

A Boolean negamax can prune more
B Alphabeta can prune more
C They are exactly the same, when the search is started with

a full window (-infinity, +infinity)
D They can be made the same by using a different alphabeta

window

• A: At the first MAX node, alphabeta has to evaluate every
child before it learns that the maximum possible value is 1
(i.e., it will have to keep looking after it finds a 1)
• Boolean negamax can stop right away when it finds TRUE

• But also D: If we initialize the window to (−1,1), then
alphabeta can prune immediately

6



Quiz 5 Review: Q15

Q15 For games with only two outcomes (win-loss), how do
boolean negamax and standard alphabeta search as in
alphabeta.py compare in terms of pruning power? Assume
that in alphabeta, a win is represented by +1 and a loss
by -1.

A Boolean negamax can prune more
B Alphabeta can prune more
C They are exactly the same, when the search is started with

a full window (-infinity, +infinity)
D They can be made the same by using a different alphabeta

window
• A: At the first MAX node, alphabeta has to evaluate every

child before it learns that the maximum possible value is 1
(i.e., it will have to keep looking after it finds a 1)
• Boolean negamax can stop right away when it finds TRUE

• But also D: If we initialize the window to (−1,1), then
alphabeta can prune immediately

6



Quiz 5 Review: Q15

Q15 For games with only two outcomes (win-loss), how do
boolean negamax and standard alphabeta search as in
alphabeta.py compare in terms of pruning power? Assume
that in alphabeta, a win is represented by +1 and a loss
by -1.

A Boolean negamax can prune more
B Alphabeta can prune more
C They are exactly the same, when the search is started with

a full window (-infinity, +infinity)
D They can be made the same by using a different alphabeta

window
• A: At the first MAX node, alphabeta has to evaluate every

child before it learns that the maximum possible value is 1
(i.e., it will have to keep looking after it finds a 1)
• Boolean negamax can stop right away when it finds TRUE

• But also D: If we initialize the window to (−1,1), then
alphabeta can prune immediately

6



Quiz 5 Review: Q16

Q16 Search 1: We use boolean negamax search to solve a
game with of constant branching factor b = 5 and constant
depth d = 10. Assume that the game is a win for the first
player and that our program has perfect move ordering. Let
n1 be the number of nodes searched.
Search 2: after we further improve our program, it can now
solve the same game while searching to a depth of only 8.
Let n2 be the number of nodes searched now.
Question: Approximately, what is the ratio n1/n2?
• A 5 B 1 C 2 D 8 E 10 F 25 G >100
• There are b2 = 25 fewer paths at depth 8 than at depth 10,

BUT
• Perfect ordering means that only a single branch needs to

be searched from each OR node
• So one of the two “saved” levels will have exactly 1 path

from each node
• A: So there will only be b = 5 times fewer paths searched

7



Quiz 5 Review: Q16 cont.

d=0 (OR)

d=1 (AND)

d=2 (OR)

d=3 (AND)

d=4 (OR)

d=5 (AND)

Example: search to d = 3 (red) instead of d = 5 (blue)
• 5× more nodes at d = 4 than d = 3

• Why? Each AND must search all 5 children
• Same number of nodes at d = 5 as at d = 4, because

d = 4 is OR nodes
• Each OR node searches only a single child (due to perfect

ordering)

8



Quiz 6 Review

• 74 attempts, average 90.2%
• Lowest scores: Q17: 79.7%, Q18: 75.7%

9



Quiz 6 Review: Q17

Q17 Assume we search a chess position with an evaluation
function that can return either exact or heuristic values. We
use exact values for win = 1000, draw = 0, loss = -1000 for
terminal states, and other numbers (not equal to these) for
non-terminal states. The result of a depth-limited alphabeta
search is 0. Claim: this proves that the game is a draw.
• Answer: False
• We did a depth-limited search
• Some “leaves” were evaluated using the heuristic

10



Quiz 6 Question 17 Review

• We did a depth-limited search. Some “leaves” were
evaluated using the heuristic.
• Search establishes two proofs, one for each player

• heuristic value of root ≥ 0 for max
• heuristic value of root ≤ 0 for min

• So it is not a proven draw
• With deeper search, the values of some of those “leaf”

nodes will change
• Some could turn out to be wins or losses
• This can change the minimax value!
• See examples next slides

11



Quiz 6 Question 17

• Leaf that is proven draw gives minimax score
• Other leaves evaluated by heuristic

12



Quiz 6 Question 17

• Deeper search proves true value of other leaves
• Root becomes a win

13



Quiz 6 Question 17

• Another possible outcome: Root becomes a draw

14



Quiz 6 Question 17

• Another possible outcome: Root becomes a loss

15



Quiz 6 Question 18 Review

• Question 18: We do a depth-limited alphabeta search of a
checkers position, with a heuristic evaluation function for
this game. Assume that all heuristic evaluation scores are
larger than proven-loss and smaller than proven-win.
The search does not always reach the end of the game. It
returns a proven-draw minimax score. Claim: we can trust
this result, the position must be a draw.
• Answer: False
• The result depends on the heuristics used to evaluate other

nodes. So we cannot trust it. For example, there could be
a win that is evaluated by a negative heuristic score. Then
the program would not have that move in its PV.

16



Knowledge in Heuristic Search

17



Using Knowledge in Heuristic Search

• How can knowledge be used in heuristic search?
• Evaluate states
• Evaluate actions
• Other ways

• Properties and interpretations of knowledge
for heuristic search
• Probabilities, preferences, ordering, ranking

• Representing knowledge
• Rules, patterns, features, neural nets

• Acquiring knowledge
• Manual vs machine learning

18



Knowledge for Search - the Story So Far

• Discussed many search techniques
• Most were “knowledge-free”

• Blind search
• Random sampling
• Solving games with boolean negamax or alphabeta

• Others used a “black box” heuristic evaluation function
• Depth-limited alphabeta search
• Move ordering heuristic

• How to build such a heuristic function?

19



Treasure Hunt Example from Lecture 7

• Results from running
heuristic_search_on_tree.py

• A little bit of heuristic guidance
greatly reduced number of samples
until treasure was found

• With perfect heuristic:
walk straight to goal

• Question: Could we do as well in
games with a perfect heuristic?

• Not quite. Remember proof trees.
Even with perfect heuristics, need
to cover all the opponent’s move
choices.

• Not sufficient to find a single
path to the “goal”

20



Treasure Hunt Example from Lecture 7

• Results from running
heuristic_search_on_tree.py

• A little bit of heuristic guidance
greatly reduced number of samples
until treasure was found

• With perfect heuristic:
walk straight to goal

• Question: Could we do as well in
games with a perfect heuristic?

• Not quite. Remember proof trees.
Even with perfect heuristics, need
to cover all the opponent’s move
choices.

• Not sufficient to find a single
path to the “goal”

20



Big Questions - Knowledge for Heuristic Search

• What is knowledge used for?
• Where does it come from?
• How is it selected?
• How is it constructed?
• How is it learned?

21



Kinds of Knowledge in Heuristic Search

• Many kinds of knowledge in heuristic search
• The “big two” for us:

1. State evaluation
2. Move evaluation

• Many other examples of using knowledge

22



Other Kinds of Knowledge in Heuristic Search

• Time control, search depth control
• Knowledge to reduce size of state space

• DAG vs tree
• Benson’s algorithm in Go

• Efficient state representation (we discussed)
• Knowledge about algorithm optimization and tuning
• Many more...

23



Knowledge for State Evaluation

State evaluation
• What is it?

• Mapping from (full) state to one number
• What does it measure?

• How good is that state?
• Other terms with similar meaning:

• Evaluation function
• Position evaluation

24



Knowledge for Move Evaluation

Move evaluation
• What is it?

• Mapping from move (action) to number
• What does it measure?

• How good is that move?
• Example: probability that this is the best move

• Can be used as filter:
• Which moves are (probably) bad and should be filtered out

(pruned)
• Other terms with similar meaning:

• Action value
• Move value
• Q-value in machine learning

25



Details on State Evaluation

• We know exact evaluation in terminal states
• Win, loss, draw, win by 23.5 points,...

• What about heuristic evaluation in non-terminal states?
• In games, two kinds of evaluation are popular
• Heuristic evaluation:

• Higher is better
• “Just a number”, no extra meaning, used for

ranking/ordering moves
• Winning probability:

• Higher is better
• Has an interpretation as probability

26



Heuristic State Evaluation in Search

• Most important use of state evaluation:
• Evaluation function in search

• Leaf nodes of search evaluated by this function
• Exact evaluation for terminal states
• Heuristic evaluation of non-terminal states

• Interior nodes in search evaluated by minimax rule
• Backup the evaluation in leaf nodes:

• to parent . . .
• to grandparent, further up . . .
• . . . all the way to the root

27



Heuristic Evaluation Function

• Heuristic evaluation:
higher is better
• One possible interpretation:

estimate of score of game
• +12
• “Black is about 12 points ahead”

• May have no “hidden” interpretation
• Evaluation can be “just a number”
• Used just for relative ranking of

positions

28



Example: Evaluation Function in Chess

• Queen = 9, rook = 5, bishop = 3,...
• Positional features, such as location of pieces
• Evaluation =

sum of my material’s values
- sum of opponent’s material’s values
• Higher value is better
• No “deeper meaning”, just a number
• Use in search, example:

• Move A leads to position with evaluation 1.49
• Move B leads to position with evaluation 1.52
• Search will select B over A

29



Relative vs Absolute Evaluation

• For decision-making, the evaluation numbers themselves
do not matter
• Only the ordering given by the numbers matters

(higher is better)
• It decides the preference or ranking between moves

• Example 1: multiply all evaluations by 10
• Example 2: add 7 to all evaluations
• ⇒ The search will make exactly the same decisions

30



Relative vs Absolute Evaluation

• Monotonically increasing (order-preserving) function:

x > y =⇒ f (x) > f (y)

• Any monotonically increasing mapping of the evaluation
function will give the same search behavior
• Same idea in utility theory (Lecture 3): ordinal utility

• Cardinal comparisons (exact values) become important
when you aggregate multiple evaluations
• E.g., by taking expectations
• Some increasing mappings still give same search behavior

when evaluations aggregated
• Others might not

31



Relative vs Absolute Evaluation

• Monotonically increasing (order-preserving) function:

x > y =⇒ f (x) > f (y)

• Any monotonically increasing mapping of the evaluation
function will give the same search behavior
• Same idea in utility theory (Lecture 3): ordinal utility
• Cardinal comparisons (exact values) become important

when you aggregate multiple evaluations
• E.g., by taking expectations
• Some increasing mappings still give same search behavior

when evaluations aggregated
• Others might not

31



But - What Does an Evaluation Mean?

One Interpretation:
• General motto:

“Similar evaluation values for similar states”
More precise version
• All states with the same evaluation are “equally good”
• They have the same (unknown to us)

probability of winning
• Higher evaluation = higher probability of winning
• Evaluation function partitions set of all states S

• Subsets Sv , one subset for each value v
• All states in same Sv are assumed equally good for us

32



Mixing Exact and Heuristic Evaluation

• We can mix exact and heuristic evaluations
• If we are careful, we can get true proofs of wins and losses

this way
• Example: win = 10000, highest heuristic score = 5000
• If alphabeta returns 10000, it is a proven win
• Having a good heuristic can help speed up an exact proof

• Provides good move ordering for iterative deepening search
• A better move sorted first means more cuts in the tree

search
• Careful: remember problem with draw vs heuristic scores

in proving TicTacToe

33



What does Winning Probability Mean?

• Different interpretations
• Clearest case:

• game with chance element
• e.g. dice rolls

• The winning probability is the minimax score!
• Example from backgammon

• Endgame state s
• Need to roll two sixes to win, lose otherwise
• Probability of rolling two sixes = 1/6× 1/6 = 1/36
• State evaluation v(s) = 1/36
• Use as evaluation in search:

move to s if it has the highest winning probability

34



Winning Probability in Games with No Chance

• There are no probabilities in the game itself
• A perfect player would know with certainty

• True winning probability is either 0% or 100%
• Probability can arise from

• Our imperfect understanding of the game
• Generalization and abstraction in our evaluation
• Randomness in our strategy
• Randomness or imperfect understanding of the opponent’s

strategy

35



Example - Winning Probabilities in Value Net

Image source: Silver et al,

Mastering the game of Go with

deep neural networks and tree

search, Nature

• Can use machine learning to
learn estimates of win probabilities
• Example: AlphaGo’s value network
• Deep neural net
• Map: from state to learned win

probability

36



Using Knowledge for Move Evaluation

• Given a state
• Also given the possible moves from that state
• Put a numeric value on each move
• Main use: action selection in search, in simulation
• Can also be used for

• Move ordering in search
• Move pruning

• Again, we can have both types of evaluation
• Without a probabilistic interpretation
• With a probabilistic interpretation

37



Move Evaluation as “A Number”

• No interpretation
• Bigger is better
• Example: Go program Explorer

(ca. 1989 - 1995)
• Where did its evaluations come

from?
• Large number of hand-made

heuristics for different types of
moves

38



Move Evaluation as Probability

• Assume move i has probability pi :
• Interpretation 1:

• pi is probability that move i is a win
• Interpretation 2:

• pi is probability that move i is the best move
• Both make sense
• Which one you use depends on

how you compute or estimate those numbers

39



Relation between State and Move Evaluation (1)

• Case 1:
• We have state evaluation
• We need move evaluation
• Easy - do a 1 ply search
• Evaluation of move:

• Evaluation of state after making that move
• Main disadvantage: slow if branching factor is large

• Example - 19× 19 Go: over 300 moves, evaluations, undo
to make a single decision

40



Relation between State and Move Evaluation (2)

• Case 2:
• We have only move evaluation
• We need state evaluation
• No easy solution
• We could try to do “greedy rollout” by following the

sequence of best-evaluated moves
• Slow, noisy result
• Not used in practice (compare with randomized simulations

later)
• Still have to evaluate the terminal state to get a value

41



Acquiring Evaluation Knowledge

• Where do evaluations come from?
• (now) Machine learning
• (old) Local goal-directed search
• (old) Handcoded rules
• First, discuss how to represent knowledge in a program

42



Representing Knowledge for Evaluation

• Many ways to represent knowledge
• Handcoded rules
• Simple features
• Pattern databases
• Neural nets

43



Handcoded Rules

def selfatari(board, move, color):
maxoldliberty = maxliberty(board, move,

color, 2)
if maxoldliberty > 2:

return False
cboard = board.copy()
isLegal = cboard.move(move, color)
if isLegal:

newliberty = cboard.liberty(move, color)
if newliberty == 1:

return True
return False

• Most direct way
• Example: heuristic move filter, “avoid selfatari”

44



Simple Features

enum FeBasicFeature{
FE_PASS_NEW,
FE_PASS_CONSECUTIVE,
FE_CAPTURE_ADJ_ATARI,
...
FE_CAPTURE_MULTIPLE,
FE_EXTENSION_NOT_LADDER,
FE_EXTENSION_LADDER,
...
FE_TWO_LIB_SAVE_LADDER,
FE_TWO_LIB_STILL_LADDER,
...
FE_SELFATARI,
FE_ATARI_LADDER,
...
FE_DOUBLE_ATARI,
FE_DOUBLE_ATARI_DEFEND,
FE_LINE_1,
FE_LINE_2,
FE_LINE_3,
...
}

• Idea: each feature is a boolean
statement about a state, or a
move
• Each feature is simple and easy

to compute
• With machine learning, we can

construct an evaluation function
from a combination of many
simple features
• Move feature vector:

(0,0,1,...,1,1,0,...,1,0,...0,0,...)
• Examples: next few slides

45



Remi Coulom’s Simple Features (1)

Source: Remi Coulom, Computing Elo Ratings of Move Patterns in the Game of Go
46



Remi Coulom’s Simple Features (2)

Source: Remi Coulom, Computing Elo Ratings of Move Patterns in the Game of Go

47



Pattern Databases

Image source: Stern et al, Bayesian

Pattern Ranking for Move Prediction in

the Game of Go

• Large patterns can be learned
from master games, if they are
frequently used
• In Go, typically we have many

different sizes of pattern:
• From small 3x3 patterns to full

board
• A main question is how to

evaluate such patterns
• Measure how often the move in

the center is played immediately,
or later

48



Neural Nets

Image source:

https://www.slideshare.net/

ShaneSeungwhanMoon/

how-alphago-works

• Represent knowledge in (large
number of) weights of the neural
net
• Lower levels of net encode local

knowledge (e.g. 3x3, 5x5)
• Higher levels can express global

evaluation
• Much more on nets later in the

course

49

https://www.slideshare.net/ShaneSeungwhanMoon/how-alphago-works
https://www.slideshare.net/ShaneSeungwhanMoon/how-alphago-works
https://www.slideshare.net/ShaneSeungwhanMoon/how-alphago-works


Example of Exact Knowledge:
Benson’s Algorithm in Go

• Benson’s algorithm finds stones
and territories that are
unconditionally alive
• No matter what opponent plays:

they can never capture our
stones
• A generalization of “two eyes”
• Can be used as a filter in a

program - do not generate
moves in safe territory

50



Summary

• Many kinds of knowledge
• Used for evaluating states and moves
• Heuristic rules, patterns, neural networks
• Exact knowledge, e.g. safe stones

51


	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Knowledge in Heuristic Search


