Computing Science (CMPUT) 455

Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta
james.wrightQualberta.ca

Fall 2021

james.wright@ualberta.ca

Today’s Topics - Lecture 11

Midterm results
Quiz 5 review

Quiz 6 review
Defining and using knowledge in heuristic search

State evaluation
¢ Move evaluation

Coursework

® Assignment 2: due Monday, Oct 18 (i.e.,next Monday!)
e Quiz 7: due Monday, Oct 25 (i.e., not next Monday)
® Topic: Simulations (lecture 12)

® Read van der Werf et al., Solving Go on small boards

Midterm Statistics

e 78 attempts, average 77.7%

Overall number of students achieving grade ranges

.

3 .

o I
000-478 470-945 045-1418 1410-1891 1891-2064 2064-2006 2006-3900 0900-9742 97.02-4285 42S6-4721 4727-5

Won'’t review questions:
¢ In-class: Everyone got different questions
¢ eClass: We reuse some questions from year to year

Quiz 5 Review

e Quiz 5, Minimax search
e 91 (!) attempts. Average grade: 87%
e | owest scores: Q15: 72.5%, Q16: 56%

Quiz 5 Review: Q15

Q15 For games with only two outcomes (win-loss), how do
boolean negamax and standard alphabeta search as in
alphabeta.py compare in terms of pruning power? Assume
that in alphabeta, a win is represented by +1 and a loss
by -1.

A Boolean negamax can prune more

B Alphabeta can prune more

C They are exactly the same, when the search is started with
a full window (-infinity, +infinity)

D They can be made the same by using a different alphabeta
window

Quiz 5 Review: Q15

Q15 For games with only two outcomes (win-loss), how do
boolean negamax and standard alphabeta search as in
alphabeta.py compare in terms of pruning power? Assume
that in alphabeta, a win is represented by +1 and a loss
by -1.

A Boolean negamax can prune more
B Alphabeta can prune more
C They are exactly the same, when the search is started with
a full window (-infinity, +infinity)
D They can be made the same by using a different alphabeta
window
e A: At the first MAX node, alphabeta has to evaluate every
child before it learns that the maximum possible value is 1
(i.e., it will have to keep looking after it finds a 1)
® Boolean negamax can stop right away when it finds TRUE

Quiz 5 Review: Q15

Q15 For games with only two outcomes (win-loss), how do
boolean negamax and standard alphabeta search as in
alphabeta.py compare in terms of pruning power? Assume
that in alphabeta, a win is represented by +1 and a loss
by -1.

A Boolean negamax can prune more

B Alphabeta can prune more

C They are exactly the same, when the search is started with
a full window (-infinity, +infinity)

D They can be made the same by using a different alphabeta
window

e A: At the first MAX node, alphabeta has to evaluate every
child before it learns that the maximum possible value is 1
(i.e., it will have to keep looking after it finds a 1)

® Boolean negamax can stop right away when it finds TRUE

¢ But also D: If we initialize the window to (—1, 1), then
alphabeta can prune immediately

Quiz 5 Review: Q16

Q16

Search 1: We use boolean negamax search to solve a
game with of constant branching factor b = 5 and constant
depth d = 10. Assume that the game is a win for the first
player and that our program has perfect move ordering. Let
n1 be the number of nodes searched.

Search 2: after we further improve our program, it can now
solve the same game while searching to a depth of only 8.
Let n2 be the number of nodes searched now.

Question: Approximately, what is the ratio n1/n2?

e A5 B1 C2 D8 E10 F25 G>100

There are b? = 25 fewer paths at depth 8 than at depth 10,
BUT

Perfect ordering means that only a single branch needs to
be searched from each OR node

So one of the two “saved” levels will have exactly 1 path
from each node

A: So there will only be b = 5 times fewer paths searched

Quiz 5 Review: Q16 cont.

s

Example: search to d = 3 (red) instead of d = 5 (blue)
® 5x more nodes at d =4 thand =3
® Why? Each AND must search all 5 children

e Same number of nodes at d = 5 as at d = 4, because
d = 4is OR nodes
® Each OR node searches only a single child (due to perfect
ordering)

Quiz 6 Review

e 74 attempts, average 90.2%
e |owest scores: Q17: 79.7%, Q18: 75.7%

Quiz 6 Review: Q17

Q17 Assume we search a chess position with an evaluation
function that can return either exact or heuristic values. We
use exact values for win = 1000, draw = 0, loss = -1000 for
terminal states, and other numbers (not equal to these) for
non-terminal states. The result of a depth-limited alphabeta
search is 0. Claim: this proves that the game is a draw.

* Answer: False
e We did a depth-limited search
e Some “leaves” were evaluated using the heuristic

Quiz 6 Question 17 Review

We did a depth-limited search. Some “leaves” were
evaluated using the heuristic.
Search establishes two proofs, one for each player

® heuristic value of root > 0 for max
® heuristic value of root < 0 for min

So it is not a proven draw

With deeper search, the values of some of those “leaf”
nodes will change

Some could turn out to be wins or losses
This can change the minimax value!
See examples next slides

Quiz 6 Question 17

o] max
PN |
of ®-2 min
' N\
e e€¢& &
5 B -2 6 heuristic values
proven
draw

e | eaf that is proven draw gives minimax score
e Other leaves evaluated by heuristic

Quiz 6 Question 17

e max
Y\ .
. . [elels] MIN

S N N
. ﬂ.m exact values

. ‘ . from deep search

¢ Deeper search proves true value of other leaves
¢ Root becomes a win

Quiz 6 Question 17

max
®8 min

AW
@ exact values

‘ from deep search

¢ Another possible outcome: Root becomes a draw

Quiz 6 Question 17

OB max
7N
& @ E min

Y N SN\
. EOOII@. exact values

. . ‘ from deep search

¢ Another possible outcome: Root becomes a loss

Quiz 6 Question 18 Review

¢ Question 18: We do a depth-limited alphabeta search of a
checkers position, with a heuristic evaluation function for
this game. Assume that all heuristic evaluation scores are
larger than proven-loss and smaller than proven-win.

The search does not always reach the end of the game. It
returns a proven-draw minimax score. Claim: we can trust
this result, the position must be a draw.

* Answer: False
® The result depends on the heuristics used to evaluate other
nodes. So we cannot trust it. For example, there could be

a win that is evaluated by a negative heuristic score. Then
the program would not have that move in its PV.

Knowledge in Heuristic Search

Using Knowledge in Heuristic Search

How can knowledge be used in heuristic search?

e FEvaluate states
e Evaluate actions
e Other ways

Properties and interpretations of knowledge
for heuristic search

* Probabilities, preferences, ordering, ranking
Representing knowledge

* Rules, patterns, features, neural nets
Acquiring knowledge

® Manual vs machine learning

Knowledge for Search - the Story So Far

Discussed many search techniques
Most were “knowledge-free”

* Blind search
® Random sampling
® Solving games with boolean negamax or alphabeta

Others used a “black box” heuristic evaluation function
® Depth-limited alphabeta search
* Move ordering heuristic

How to build such a heuristic function?

Treasure Hunt Example from Lecture 7

¢ Results from running
heuristic_search_on_tree.py

¢ A little bit of heuristic guidance
greatly reduced number of samples
until treasure was found

‘% e With perfect heuristic:
\ walk straight to goal

¢ Question: Could we do as well in
games with a perfect heuristic?

20

Treasure Hunt Example from Lecture 7

Results from running
heuristic_search_on_tree.py

A little bit of heuristic guidance
greatly reduced number of samples
until treasure was found

With perfect heuristic:
walk straight to goal

Question: Could we do as well in
games with a perfect heuristic?

Not quite. Remember proof trees.
Even with perfect heuristics, need
to cover all the opponent’s move
choices.

* Not sufficient to find a single
path to the “goal”

20

Big Questions - Knowledge for Heuristic Search

What is knowledge used for?
Where does it come from?
How is it selected?

How is it constructed?

How is it learned?

21

Kinds of Knowledge in Heuristic Search

¢ Many kinds of knowledge in heuristic search
¢ The “big two” for us:

1. State evaluation
2. Move evaluation

e Many other examples of using knowledge

22

Other Kinds of Knowledge in Heuristic Search

Time control, search depth control

Knowledge to reduce size of state space
® DAG vs tree
® Benson’s algorithm in Go

Efficient state representation (we discussed)
Knowledge about algorithm optimization and tuning
e Many more...

23

Knowledge for State Evaluation

State evaluation
e What is it?
® Mapping from (full) state to one number
¢ What does it measure?
® How good is that state?
e Other terms with similar meaning:

e Evaluation function
® Position evaluation

24

Knowledge for Move Evaluation

Move evaluation
e What is it?
® Mapping from move (action) to number
e What does it measure?
® How good is that move?
e Example: probability that this is the best move
e Can be used as filter:
* Which moves are (probably) bad and should be filtered out
(pruned)
e Other terms with similar meaning:

¢ Action value
* Move value
® Q-value in machine learning

25

Details on State Evaluation

We know exact evaluation in terminal states
* Win, loss, draw, win by 23.5 points,...

What about heuristic evaluation in non-terminal states?

In games, two kinds of evaluation are popular
Heuristic evaluation:

® Higher is better

* “Just a number”, no extra meaning, used for

ranking/ordering moves

Winning probability:

e Higher is better

® Has an interpretation as probability

26

Heuristic State Evaluation in Search

e Most important use of state evaluation:
® Evaluation function in search
¢ |eaf nodes of search evaluated by this function
® Exact evaluation for terminal states
* Heuristic evaluation of non-terminal states
¢ Interior nodes in search evaluated by minimax rule
® Backup the evaluation in leaf nodes:

® to parent...
® to grandparent, furtherup ...
e . ..all the way to the root

27

Heuristic Evaluation Function

e Heuristic evaluation:
higher is better

\
s ® One possible interpretation:
Y | estimate of score of game
I
I
|
\
\

* +12
® “Black is about 12 points ahead”
e May have no “hidden” interpretation
7777777777 e Evaluation can be “just a number”
® Used just for relative ranking of
positions

28

Example: Evaluation Function in Chess

Queen =9, rook = 5, bishop = 3,...
Positional features, such as location of pieces
Evaluation =

sum of my material’s values
- sum of opponent’s material’s values

Higher value is better
No “deeper meaning”, just a number

Use in search, example:

* Move A leads to position with evaluation 1.49
* Move B leads to position with evaluation 1.52
e Search will select B over A

29

Relative vs Absolute Evaluation

¢ For decision-making, the evaluation numbers themselves
do not matter

¢ Only the ordering given by the numbers matters
(higher is better)

e |t decides the preference or ranking between moves

e Example 1: multiply all evaluations by 10
® Example 2: add 7 to all evaluations
® = The search will make exactly the same decisions

30

Relative vs Absolute Evaluation

¢ Monotonically increasing (order-preserving) function:

x>y = f(x)>f(y)

¢ Any monotonically increasing mapping of the evaluation
function will give the same search behavior

e Same idea in utility theory (Lecture 3): ordinal utility

31

Relative vs Absolute Evaluation

Monotonically increasing (order-preserving) function:

x>y = f(x)>f(y)

Any monotonically increasing mapping of the evaluation
function will give the same search behavior

Same idea in utility theory (Lecture 3): ordinal utility

Cardinal comparisons (exact values) become important
when you aggregate multiple evaluations
* E.g., by taking expectations
® Some increasing mappings still give same search behavior
when evaluations aggregated
® Others might not

31

But - What Does an Evaluation Mean?

One Interpretation:
e General motto:
“Similar evaluation values for similar states”
More precise version

o All states with the same evaluation are “equally good”
¢ They have the same (unknown to us)
probability of winning
¢ Higher evaluation = higher probability of winning
e Evaluation function partitions set of all states S

® Subsets S,, one subset for each value v
e All states in same S, are assumed equally good for us

32

Mixing Exact and Heuristic Evaluation

e We can mix exact and heuristic evaluations

¢ |f we are careful, we can get true proofs of wins and losses
this way

e Example: win = 10000, highest heuristic score = 5000
e |f alphabeta returns 10000, it is a proven win

e Having a good heuristic can help speed up an exact proof

* Provides good move ordering for iterative deepening search
* A better move sorted first means more cuts in the tree
search

e Careful: remember problem with draw vs heuristic scores
in proving TicTacToe

33

What does Winning Probability Mean?

Different interpretations
Clearest case:

® game with chance element
® e.g. dice rolls

The winning probability is the minimax score!
Example from backgammon

* Endgame state s

Need to roll two sixes to win, lose otherwise
Probability of rolling two sixes =1/6 x 1/6 = 1/36
State evaluation v(s) = 1/36

Use as evaluation in search:

move to s if it has the highest winning probability

34

Winning Probability in Games with No Chance

* There are no probabilities in the game itself
¢ A perfect player would know with certainty

* True winning probability is either 0% or 100%
e Probability can arise from

® Qur imperfect understanding of the game

® Generalization and abstraction in our evaluation
® Randomness in our strategy

® Randomness or imperfect understanding of the opponent’s
strategy

35

Example - Winning Probabilities in Value Net

a Value network

e Can use machine learning to
learn estimates of win probabilities

e Example: AlphaGo’s value network
¢ Deep neural net

e Map: from state to learned win
Image source: Silver et al, probab|||ty

Mastering the game of Go with

deep neural networks and tree

search, Nature

36

Using Knowledge for Move Evaluation

Given a state
¢ Also given the possible moves from that state
e Put a numeric value on each move

Main use: action selection in search, in simulation
Can also be used for

* Move ordering in search

* Move pruning
e Again, we can have both types of evaluation

* Without a probabilistic interpretation
* With a probabilistic interpretation

37

Move Evaluation as “A Number”

¢ No interpretation

1 | | ® Bigger is better

o0 e Example: Go program Explorer
TR TR (ca. 1989 - 1995)
i e Where did its evaluations come
R from?
|49 | e Large number of hand-made
‘ ‘ heuristics for different types of

moves

38

Move Evaluation as Probability

* Assume move i has probability p;:
Interpretation 1:

® p; is probability that move i is a win
Interpretation 2:

® p; is probability that move i is the best move
Both make sense
Which one you use depends on
how you compute or estimate those numbers

39

Relation between State and Move Evaluation (1)

e Case 1:

We have state evaluation
e \We need move evaluation

e Easy - do a1 ply search
Evaluation of move:
® Evaluation of state after making that move
Main disadvantage: slow if branching factor is large

® Example - 19 x 19 Go: over 300 moves, evaluations, undo
to make a single decision

40

Relation between State and Move Evaluation (2)

e Case 2:

¢ We have only move evaluation
¢ We need state evaluation

* No easy solution

e We could try to do “greedy rollout” by following the
sequence of best-evaluated moves

¢ Slow, noisy result

® Not used in practice (compare with randomized simulations
later)

e Still have to evaluate the terminal state to get a value

41

Acquiring Evaluation Knowledge

e Where do evaluations come from?

e (now) Machine learning

¢ (old) Local goal-directed search

¢ (old) Handcoded rules

e First, discuss how to represent knowledge in a program

42

Representing Knowledge for Evaluation

Many ways to represent knowledge
Handcoded rules

Simple features

Pattern databases

Neural nets

43

Handcoded Rules

def selfatari (board, move, color):
maxoldliberty = maxliberty (board, move,

color, 2)
if maxoldliberty > 2:
return False
cboard = board.copy ()
isLegal = cboard.move (move, color)
if isLegal:
newliberty = cboard.liberty (move, color)

if newliberty ==
return True
return False

* Most direct way
e Example: heuristic move filter, “avoid selfatari”

44

Simple Features

enum FeBasicFeature(
FE_PASS_NEW,

FE_PASS_CONSECUTIVE,
FE_CAPTURE_ADJ_ATARI,

FE_CAPTURE_MULTIPLE,
FE_EXTENSION_NOT_LADDER,
FE_EXTENSION_LADDER,

FE_TWO_LIB_SAVE_LADDER,
FE_TWO_LIB_STILL_LADDER,

FE_SELFATARI,
FE_ATARI_LADDER,

FE_DOUBLE_ATARI,
FE_DOUBLE_ATARI_DEFEND,
FE_LINE_1,

FE_LINE_2,

FE_LINE_3,

}

Idea: each feature is a boolean
statement about a state, or a
move

Each feature is simple and easy
to compute

With machine learning, we can
construct an evaluation function
from a combination of many
simple features

Move feature vector:
(0,0,1,...,1,1,0,...,1,0,...0,0,...)
Examples: next few slides

45

Remi Coulom’s Simple Features (1)

Feature Level v Description
Pass 1 0.17 Previous move is not a pass
2 24.37 Previous move is a pass
Capture 1 30.68 String contiguous to new string in atari
2 0.53 Re-capture previous move
3 2.88 Prevent connection to previous move
4 3.43 String not in a ladder
5 0.30 String in a ladder
Extension 1 11.37 New atari, not in a ladder
2 0.70 New atari, in a ladder
Self-atari 1 0.06
Atari 1 1.58 Ladder atari
2 10.24 Atari when there is a ko
3 1.70 Other atari
Distance to border 1 0.89
2 1.49
3 1.75
4 1.28

Source: Remi Coulom, Computing Elo Ratings of Move Patterns in the Game of Go

46

Remi Coulom’s Simple Features (2)

Distance to 2
previous move 3
4

5

16

> 17

Distance to 2
the move before 3
the previous move 4
5

16

> 17

4.32
2.84
2.22
1.58
0.33
0.21
3.08
2.38
2.27
1.68
0.66
0.70

d(oz, dy) = |0z| + |dy| + max(|dz

Source: Remi Coulom, Computing Elo Ratings of Move Patterns in the Game of Go

5

dyl)

Pattern Databases

+
T

Image source: Stern et al, Bayesian
Pattern Ranking for Move Prediction in

the Game of Go

Large patterns can be learned
from master games, if they are
frequently used

In Go, typically we have many
different sizes of pattern:

From small 3x3 patterns to full
board

A main question is how to
evaluate such patterns

Measure how often the move in
the center is played immediately,
or later

48

Neural Nets

Convolutional Neural Network (CNN)

BB OEOE
o =] | - |
gl folEl= |~ i
{57l ~[m) =
I B |~ |}
i =[] - =] - mi
L A =:=E
=t = e
= |~ |}
&] |

Image source:
https://www.slideshare.net/
ShaneSeungwhanMoon/

how-alphago-works

Represent knowledge in (large
number of) weights of the neural
net

Lower levels of net encode local
knowledge (e.g. 3x3, 5x5)
Higher levels can express global
evaluation

Much more on nets later in the
course

49

https://www.slideshare.net/ShaneSeungwhanMoon/how-alphago-works
https://www.slideshare.net/ShaneSeungwhanMoon/how-alphago-works
https://www.slideshare.net/ShaneSeungwhanMoon/how-alphago-works

Example of Exact Knowledge:
Benson’s Algorithm in Go

T S T e Benson’s algorithm finds stones
L and territories that are
unconditionally alive

¢ No matter what opponent plays:
they can never capture our
stones

i ¢ A generalization of “two eyes”

) ‘ ® Can be used as afilterin a
) fe s' C l')ﬂlilx):nh 20(55:‘) Regions: 4 program - do nOt generate
moves in safe territory

50

Summary

Many kinds of knowledge

Used for evaluating states and moves
Heuristic rules, patterns, neural networks
Exact knowledge, e.g. safe stones

51

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Knowledge in Heuristic Search

