Computing Science (CMPUT) 455

Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta
james.wrightQualberta.ca

Fall 2021

james.wright@ualberta.ca

Today’s Topics - Lecture 10

® More on Minimax and Alphabeta
® Python sample codes
¢ Solve TicTacToe again, now with alphabeta

e Compare alphabeta with naive negamax and boolean
negamax

e lterative deepening
¢ Alphabeta and proof trees; principal variation
e Search enhancements: transposition table

Coursework

Work on Assignment 2
® Deadline extended to Monday Oct 18

Quiz 5: review minimax search parts 1 and 2.
Double-length quiz

® Deadline extended to Friday Oct 8 (tomorrow)
Read Schaeffer et al, Checkers is solved. Science, 2007
Quiz 6 (due Monday)
Activities 10

Midterm

The midterm is Oct 12 (this coming Tuesday)
Topics: All material up to and including lecture 10 (today)
Midterm study guide is available from main course page

e Exam on eclass, similar to quizzes

® 90-minute time limit (modulo user-specific accomodations)
® Opens 12:01am, closes 11:59pm Mountain time
® You must start before 10:29pm if you want the full

90 minutes

No lecture on Tuesday

https://jrwright.info/cmput455/html/midterm-study-guide.html

Review - Minimax and Alpha-Beta

e Solve game tree for general case
* More than two (win-loss) outcomes
¢ Result in leaf nodes: numerical score
e Example: win-loss-draw, coded as e.g.
win = +1, draw = 0, loss = -1
¢ Minimax: player maximizes their score,
opponent minimizes
¢ Alphabeta: prune if move is outside alphabeta window
* Meaning of window: moves outside are too bad for one of

the players, that player will make a different choice
earlier on

Minimax and Alphabeta Sample Code

¢ New static evaluation function in
tic_tac_toe_integer_eval.py
® The example is for negamax, from toPlay’s point of view

e Can also be used for depth-bounded search, if evaluation
is also called for interior nodes:
alphabeta_depth_limited_tictactoe_test.py

e Note: this uses no heuristic, so it is blind search
e Evaluation is exact at leaf nodes, 0 everywhere else

Solve TicTacToe with Negamax and Alphabeta

e Compare Three Search Algorithms
- Solve TicTacToe in three different ways

¢ Naive negamax, alphabeta, boolean negamax

® boolean negamax test in
boolean_negamax_test_tictactoe.py

¢ Naive negamayx, alphabeta test in
alphabeta_tictactoe_test.py

e All solve the game

® Performance of Alphabeta, boolean negamax is similar
¢ Naive negamax not competitive - no pruning at all

¢ None of these programs use a heuristic

e We can easily add a heuristic

Activity 10a: add a heuristic for TicTacToe

e Add a heuristic in the function
staticallyEvaluateForToPlay ()

¢ |dea: highest value for sure wins (3 in a row complete),
lowest for losses

¢ |f not won or lost: scan all eight lines on the board
(3 horizontal, 3 vertical, 2 diagonal)

e Compute a score for each line depending on how good or
bad it is for you
e Add up all those scores to get an evaluation function

Activity 10a Continued

¢ How to evaluate a line?
¢ Check different “features” and give a bonus or penalty
when they are present
e [f the line is blocked for both, then value 0

® Examples: xox .0x XX0
* [f aline is an “open two”, then very valuable
® Examples: xx. 0.0
* [f aline is an “open one”, then has some value for that
player
® Examples: x. . .o.

e Completely open line
® Example: ...

Activity 10a-c Questions to Explore

For “open two”, should they be the same value for your
own color and the opponent? Or is one more valuable than
the other?

How about a completely open line ... ? Should it be
neutral, or a small advantage for the current player?

What works better: adding up all features, or finding the
most important one? Why?

What are good “feature weights™? Experiment with different
choices.

Activities 10b and 10c: Test if the solver needs fewer
nodes, and becomes faster.

Depth-limited Alphabeta

From alphabeta_depth_limited.py

def alphabetaDL (state, alpha, beta, depth):
if state.endOfGame () or depth ==
return state.staticallyEvaluateForToPlay ()

value = —-alphabetaDL (state, -beta,
—alpha, depth - 1)

initial call with full window
def callAlphabetaDL (rootState, depth):
return alphabetaDL (rootState, —-INFINITY,
INFINITY, depth)

Experiment: Explore Depth-limited Alphabeta

alphabeta_depth_limited_tictactoe_test.py
e TicTacToe with evaluation scores in
tic_tac_toe_integer_eval.py
¢ Runs alphabeta with different depth limits: iterative
deepening
e Example 1: empty board. Result always 0

e Example 2: win for X. Result changes to win score
when win is proven at depth 5

Experiment: Explore Depth-limited Alphabeta

alphabeta_depth_limited_tictactoe_test.py

e TicTacToe with evaluation scores in
tic_tac_toe_integer_eval.py

¢ Runs alphabeta with different depth limits: iterative
deepening

e Example 1: empty board. Result always 0

e Example 2: win for X. Result changes to win score
when win is proven at depth 5

¢ Interpretation: against best response:
e Black can win in 5 moves
¢ Black cannot win in 4 or fewer moves

Alphabeta and Proofs

¢ Assume the minimax value of a game is m

¢ alphabeta search (with no depth limit) computes the
score m

e We can view alphabeta as finding two proofs at the same
time

* Max player can guarantee at least m

® Min player can limit score to at most m

Alphabeta and Proofs - Continued

o |f we store information about all nodes in the search, then
we have these two strategies stored explicitly
e Also remember the relation to boolean minimax:

¢ |f we know a candidate value m:
¢ We can do two boolean searches with tests > mand > m
® Together they can verify that m is the minimax result

Alphabeta and Playing Optimally - OR Node

e Assume both players follow best play based on the stored
values

e Assume the root nis an OR node with minimax value
score(n) = m

e Children cq, ..., Ck:

® score(n) = m = max(score(cy), score(cy), ... score(ck))

¢ OR player can find (at least) one child ¢;
with score(c;) = m, and play that move

e This move leads to an AND node

Alphabeta and Playing Optimally - AND Node

¢; is an AND node

score(cj) = m = min(score(c;jq), score(cp), ...

AND player can find (at least) one child ¢;

with score(cj) = m, and play that move

This move leads to an OR node

Repeat the same arguments until the end of the game

Principal Variation (PV)

¢ |f both players play best moves:
they follow a principal variation or PV of the search

¢ This is a move sequence with the property that
each node in the sequence has a score of m

¢ Even with a depth-limited search and heuristic evaluation,
a PV exists

e |t will only go as deep as the search

¢ All these nodes have the same value as the
heuristic evaluation of the last node in the sequence

Principal Variation and Proof Trees

Consider the two parts of the proof that the minimax value
is m

® Proof that the max player can get at least m

® Proof that the min player can get m or less
If both players follow their proof, they will play out a PV
The reverse is also true:

Assume both players follow a move sequence S, such that
for all nodes along that sequence the minimax score is m
Then there exist two proof trees:

® P1 for max

e P2 for min

® Sis the intersection of P1 and P2 (set of nodes that are in
both trees)

Summary of Basic Solving Algorithms

Alphabeta and Negamax

Alphabeta performance similar to boolean negamax here
Naive negamax much worse, no pruning

Discussed relation between alphabeta and proof trees
Principal variation: a line with best play for both

Minimax Search Enhancements

20

Search Enhancements - Overview

Hashing to cache search results

Transposition table

¢ From searching a tree to searching a DAG
Iterative deepening and move ordering
History heuristic

More alphabeta search improvements

21

How to Store Information About Search Nodes?

¢ In our minimax codes so far we did not store any
information on search states

The searches just returned a boolean, or an integer

The searches used depth-first order
® Go to first child, then first child of first child,...

What if we want more detailed search results,
and store them?
Examples:

® Store the best move

Store a proof tree

Store search statistics

Re-use search results for a later, deeper search

22

Get Best Move and PV

e |t is easy to modify search to return both the score and a
PV

* However, the overhead is quite large

¢ Very many move sequences are created during search

¢ Almost all of them are discarded later

e Much more efficient approach: use a transposition table
e Can get best move and PV information almost for free

e Several other important benefits

23

Big Idea: Caching Information

e A cache is an information store
e Example: on-chip cache for CPU

® Accesses data much faster than loading from main memory
e Example: cache for rendered web pages

e Data in cache is stored locally as opposed to loading from
web, parsing html, loading images, building on-screen
image, recomputing...

24

Hashing and Transposition Table

® |dea:
Store game positions and its search information

e Examples: minimax score, win/loss flag, best move, search
depth reached in iterative search, number of nodes
searched, timestamp (when solved),...

e How to store?
¢ Typically, a fixed-size array is used for a search

e For our simple example,
we just use a Python dictionary

25

Storing a TicTacToe Position

How to store?

Standard approach: compute a code or hash code for the
position

Store in the transposition table under this code

For TicTacToe, less than 3% = 19, 683 states total

Can easily store all states that we search

26

Code for a TicTacToe Position

e Remember our 1-d array representation
e Number code for each point

e EMPTY =0

e BLACK =1, used for’X’

® WHITE = 2, used for 'O’

Board stored in array of size 9:
#0112
3 45
6 7 8
¢ View state as array of codes:
¢ s = (1,1, 2, 2, 2, 1, 1, 0, 0]

e Example: s[0] = 1 means top left corneris’X’

27

Store Code and Data in Simple Transposition
Table

Array of codes: s=[1,1,2,2,2,1,1, 0, 0]
Code of state: treat codes as a base 3 integer =
112221100 in base 3

code(s) =

1x384+1x3"+2x30+2x3%+
+2x3* +1x3¥+1x3240x3"+0x30
Store pairs (code (s), data(s))

To store in a Python dictionary

® Use code (s) as the key
e Store data (s) as the value under that key

28

Example: Simple Transposition Table

® transposition_table_simple.py

Store boolean result score (True or False) as value

® |tis easy to store best move as well

class
def

def

Use code as key
Lookup failure: return None
Lookup success - return score: True, Of False

TranspositionTable (object) :

store(self, code, score):
self.table[code] = score

lookup (self, code):
return self.table.get (code)

29

Example: Boolean Negamax with Simple
Transposition Table

® boolean_negamax_tt.py

e Always try lookup first
e |f succeeds:
® Done, no search needed
e Otherwise:
* Do the regular search
e Store result in table before return from function
def negamaxBoolean (state, tt):
result = tt.lookup(state.code())
if result != None:
return result

30

boolean_negamax_tt .py continued

if state.endOfGame () :
result = state.staticallyEvaluateForToPlay ()
return storeResult (tt, state, result)
for m in state.legalMoves () :
state.play (m)
success = not negamaxBoolean (state, tt)
state.undoMove ()
if success:
return storeResult (tt, state, True)
return storeResult (tt, state, False)

def storeResult (tt, state, result):

tt.store(state.code (), result)
return result

31

Apply Transposition Table to Solving TicTacToe

® tic_tac_toe_solve_with_tt.py
e About 3x faster than without table

¢ For larger problems (Go, NoGo, Gomoku, ...) using the
table can be several orders of magnitude faster

32

Full Transposition Table

Problem with our simple approach so far:

Does not scale to large searches

Using dictionary to store all states will fill memory within
seconds

® For a fast program written in something like C++ anyway...

¢ We need a solution that works with fixed memory limit
Only store most important states
Need information-losing hash codes (see next slide)

33

Example: Code for 19 x 19 Go

e Why do we not always use the full code?
e Example: Full code for 19 x 19 Go

e 3 states per point, 19 x 19 = 361 points
e Total 336" > 2572 different codes

* Not even considering history here, which is needed for Ko
rule - Go has even more distinct states

e Storing everything in a table is not feasible
¢ Using full 573+ bit codes is not necessary
e Standard today: use 64 bit codes

34

Zobrist Hash Codes

e How to compute a good 64 bit code for a state?

e Standard: Zobrist hashing, https:
//en.wikipedia.org/wiki/Zobrist_hashing

e Prepare one random number code [point] [color] for
each (point, color) combination

e Code of state is bitwise logical xor over all points on the
board

e example:
board[0] = WHITE, board[l] = EMPTY,
board[2] = BLACK, ...

® hashcode code[0] [WHITE] =xor
code[1l] [EMPTY] xor code [2][BLACK] xor ...

35

https://en.wikipedia.org/wiki/Zobrist_hashing
https://en.wikipedia.org/wiki/Zobrist_hashing

Bitwise xor in Python

e Option 1: use ~
0b1111011 ©~ 0111001000
e Option 2:

from operator import xor
xor (0b1111011, Ob111001000)

36

Transposition Table in Fixed Size Array

Where in table to store state s?
For a fixed size array, we need to compute an array index
from the 64 bit code of s
Typical solution:
® Use array of some size 2"
* Take the first n bits of code (s) as the array index
Avoid collisions: store full 64 bit code as part of data
At each lookup, compare full 64 bit code
Do not trust 64 bit codes for proofs!
* Verify solution tree without using hashing

37

Transposition Table Entries

What data to store?

Depends on type of search
For boolean negamax we only needed one bit
® True/False minimax value of state
For alphabeta, iterative deepening, need to store more

® Best move from this state

® Search score

Flags: exact value or upper or lower bound
Search depth

A flag whether it is exact result or heuristic score

Details - https:
//chessprogramming.org/Transposition_Table

38

https://chessprogramming.org/Transposition_Table
https://chessprogramming.org/Transposition_Table

State Space of TicTacToe

39

Enumerating the State Space of TicTacToe

¢ TicTacToe has a small enough state space to create and
count all states

¢ We will do it both for the tree and the DAG model
¢ How much do we save from using Transposition Table?

40

Estimating the Tree of TicTacToe

® tic_tac_toe_estimate_tree.py
Estimate for the tree model

Branching factor: 9 at root, then 8, 7, ...
Model as in Lecture 4

Estimated Tic Tac Toe positions in the tree model:
[1,9,72,504,3024,15120,60480, 181440, 362880, 362880]

41

Enumerating the Tree of TicTacToe

e Now we can do the exact count for the tree model

® tic_tac_toe_count_tree.py

def countTicTacToeTree() :
t = TicTacToe ()
positionsAtDepth = [0] % 10
countAtDepth(t, 0, positionsAtDepth)
print ("Tic Tac Toe positions in tree model:
positionsAtDepth)

n

4

42

Enumerating the Tree of TicTacToe

def countAtDepth (t, depth, positionsAtDepth):
positionsAtDepth[depth] += 1
if t.endOfGame () :

return
for i in range (9) :
if t.board[i] == EMPTY:
t.play (i)
countAtDepth(t, depth + 1,

positionsAtDepth)
t .undoMove ()

43

Enumerating the DAG of TicTacToe

¢ With transposition table, we can now count the size of the
TicTacToe state space in the DAG model

* Main idea: skip states that we saw before

® tic_tac_toe_count_dag.py

def countTicTacToeDAG() :

tt = TranspositionTable()

t = TicTacToe ()

positionsAtDepth = [0] % 10

countAtDepth(t, 0, positionsAtDepth, tt)

print ("Tic Tac Toe positions in DAG model: "
positionsAtDepth)

Enumerating the DAG of TicTacToe

def countAtDepth (state, depth, positionsAtDepth, tt
result = tt.lookup(state.code())
if result != None:
return
tt.store(state.code (), True)
positionsAtDepth[depth] += 1

if state.endOfGame () : return
for i in range (9):
if state.board[i] == EMPTY:

state.play (i)

countAtDepth(state, depth + 1,
positionsAtDepth, tt)

state.undoMove ()

45

TicTacToe - DAG vs Tree Comparison

Run tic_tac_toe_estimate_tree.py,
tic_tac_toe_count_tree.py,
tic_tac_toe_count_dag.py

Estimated positions in the tree model:

(1, 9, 72, 504, 3024, 15120, 60480, 181440,
362880, 362880]

positions in tree model:

(1, 9, 72, 504, 3024, 15120, 54720, 14817¢,
200448, 127872]

positions in DAG model:

(1, 9, 72, 252, 756, 1260, 1520, 1140,

390, 78]

46

TicTacToe - DAG vs Tree Discussion

¢ Tree: estimate is exact at depth 0 ...5 (why?)
® DAG: No savings at lower levels (why?)
* Massive savings deeper in DAG

47

Another Application of Transposition Table:
Solve All TicTacToe States

® tic_tac_toe_solve_all.py:
Traverse whole state space

¢ Solve each state

e Store all solved nodes in transposition table

e Optional activity: modify the code to print each DAG state
only once (use tt)

Solve all TicTacToe states black win/draw/white win
Depth 0: 0 black, 1 draws, 0 white, 1 total positions

Depth 1: 0 black, 9 draws, 0 white, 9 total positions

Depth 2: 48 black, 24 draws, 0 white, 72 total positions

Depth 3: 128 black, 276 draws, 100 white, 504 total positions

Depth 4: 2336 black, 544 draws, 144 white, 3024 total positions

Depth 5: 5472 black, 3168 draws, 6480 white, 15120 total positions
Depth 6: 38016 black, 7200 draws, 9504 white, 54720 total positions
Depth 7: 59472 black, 28800 draws, 59904 white, 148176 total positions
Depth 8: 81792 black, 46080 draws, 72576 white, 200448 total positions
Depth 9: 81792 black, 46080 draws, 0 white, 127872 total positions

48

More Alphabeta Improvements

49

Alphabeta Improvement: lterative deepening
and Move Ordering

¢ We have seen iterative deepening before
e Search with depth limit of 1, 2, 3, ...

e Scenario now: heuristic alphabeta search
with a (good) evaluation function

¢ Even shallow searches will often find a good move

* Remember - alphabeta is most effective if strongest move
is tried first

¢ Alphabeta window reduced most, can cut more moves
¢ |dea: first try the strongest move from previous search

* This is a very strong heuristic and used in most alphabeta
implementations

50

Alphabeta Improvement: History Heuristic

¢ |nvented by Jonathan Schaeffer (past Dean of Science) in
1983

e Game-independent improvement

® |dea: keep track of which moves are effective in causing
beta cuts in the search

¢ Give a bonus for those moves,
try them earlier among all children

e Similar idea: countermove heuristic (Uiterwijk)
- store good reply to a move

51

Many More Alphabeta Enhancements

Huge number of ideas have been tried in last 70 years
Examples:

® Minimal window search, Scout, PVS

® Quiescence search

® Parallel search

® | ate move reductions
Very good website:
https://chessprogramming.org/

Do we still need to learn all these enhancements?

52

https://chessprogramming.org/

Alpha Zero vs Alphabeta Enhancements

M*“-“*m-‘”ﬂﬂ1rkm PR BE AET. ETTROERE 0o
TFeritoa: MistrotHosh Titie-Priosu-Sasiem-oibks, T Fasinsn. Sestn i
Ehatpinyies-Frwn M'MMMWM%M
MHFIJ?H‘&.-“EM Erddir | P trbaiteGipe (il v-mban Prapeey Erm
!.J'il-l-ﬂﬂm:-hi-rerg-r TinkeeBraes -

i

Image source: 1ifein19x19.com
e [f the Alpha Zero approach works,
¢ and if we have enough computing power: no!

53

lifein19x19.com

Summary and Preview

This concludes our discussion
of standard minimax algorithms

Next topic: closer look at using knowledge in search

After that: Monte Carlo Tree Search (MCTS) -
a quite different way to approach minimax search problems
However, it has the same goals as alphabeta
® Heuristic search: play as well as possible when time limit is
given
® Solve: with unlimited time, eventually find the (perfect play)
minimax solution
* Most work on MCTS is on heuristic search, play well
e Still, also interesting for solving

54

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Minimax Search Enhancements
	State Space of TicTacToe
	More Alphabeta Improvements

