
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca

Today’s Topics - Lecture 10

• More on Minimax and Alphabeta
• Python sample codes
• Solve TicTacToe again, now with alphabeta
• Compare alphabeta with naive negamax and boolean

negamax
• Iterative deepening
• Alphabeta and proof trees; principal variation
• Search enhancements: transposition table

2

Coursework

• Work on Assignment 2
• Deadline extended to Monday Oct 18

• Quiz 5: review minimax search parts 1 and 2.
Double-length quiz

• Deadline extended to Friday Oct 8 (tomorrow)
• Read Schaeffer et al, Checkers is solved. Science, 2007
• Quiz 6 (due Monday)
• Activities 10

3

Midterm

• The midterm is Oct 12 (this coming Tuesday)
• Topics: All material up to and including lecture 10 (today)
• Midterm study guide is available from main course page
• Exam on eclass, similar to quizzes

• 90-minute time limit (modulo user-specific accomodations)
• Opens 12:01am, closes 11:59pm Mountain time
• You must start before 10:29pm if you want the full

90 minutes
• No lecture on Tuesday

4

https://jrwright.info/cmput455/html/midterm-study-guide.html

Review - Minimax and Alpha-Beta

• Solve game tree for general case
• More than two (win-loss) outcomes
• Result in leaf nodes: numerical score
• Example: win-loss-draw, coded as e.g.

win = +1, draw = 0, loss = -1
• Minimax: player maximizes their score,

opponent minimizes
• Alphabeta: prune if move is outside alphabeta window
• Meaning of window: moves outside are too bad for one of

the players, that player will make a different choice
earlier on

5

Minimax and Alphabeta Sample Code

• New static evaluation function in
tic_tac_toe_integer_eval.py

• The example is for negamax, from toPlay’s point of view
• Can also be used for depth-bounded search, if evaluation

is also called for interior nodes:
alphabeta_depth_limited_tictactoe_test.py

• Note: this uses no heuristic, so it is blind search
• Evaluation is exact at leaf nodes, 0 everywhere else

6

Solve TicTacToe with Negamax and Alphabeta

• Compare Three Search Algorithms
- Solve TicTacToe in three different ways

• Naive negamax, alphabeta, boolean negamax
• boolean negamax test in
boolean_negamax_test_tictactoe.py

• Naive negamax, alphabeta test in
alphabeta_tictactoe_test.py

• All solve the game
• Performance of Alphabeta, boolean negamax is similar
• Naive negamax not competitive - no pruning at all
• None of these programs use a heuristic
• We can easily add a heuristic

7

Activity 10a: add a heuristic for TicTacToe

• Add a heuristic in the function
staticallyEvaluateForToPlay()

• Idea: highest value for sure wins (3 in a row complete),
lowest for losses

• If not won or lost: scan all eight lines on the board
(3 horizontal, 3 vertical, 2 diagonal)

• Compute a score for each line depending on how good or
bad it is for you

• Add up all those scores to get an evaluation function

8

Activity 10a Continued

• How to evaluate a line?
• Check different “features” and give a bonus or penalty

when they are present
• If the line is blocked for both, then value 0

• Examples: xox .ox xxo
• If a line is an “open two”, then very valuable

• Examples: xx. o.o
• If a line is an “open one”, then has some value for that

player
• Examples: x.. .o.

• Completely open line
• Example: ...

9

Activity 10a-c Questions to Explore

• For “open two”, should they be the same value for your
own color and the opponent? Or is one more valuable than
the other?

• How about a completely open line ... ? Should it be
neutral, or a small advantage for the current player?

• What works better: adding up all features, or finding the
most important one? Why?

• What are good “feature weights”? Experiment with different
choices.

• Activities 10b and 10c: Test if the solver needs fewer
nodes, and becomes faster.

10

Depth-limited Alphabeta

From alphabeta_depth_limited.py

def alphabetaDL(state, alpha, beta, depth):
if state.endOfGame() or depth == 0:

return state.staticallyEvaluateForToPlay()
...

value = -alphabetaDL(state, -beta,
-alpha, depth - 1)

...

initial call with full window
def callAlphabetaDL(rootState, depth):

return alphabetaDL(rootState, -INFINITY,
INFINITY, depth)

11

Experiment: Explore Depth-limited Alphabeta

alphabeta_depth_limited_tictactoe_test.py

• TicTacToe with evaluation scores in
tic_tac_toe_integer_eval.py

• Runs alphabeta with different depth limits: iterative
deepening

• Example 1: empty board. Result always 0
• Example 2: win for X. Result changes to win score

when win is proven at depth 5

• Interpretation: against best response:
• Black can win in 5 moves
• Black cannot win in 4 or fewer moves

12

Experiment: Explore Depth-limited Alphabeta

alphabeta_depth_limited_tictactoe_test.py

• TicTacToe with evaluation scores in
tic_tac_toe_integer_eval.py

• Runs alphabeta with different depth limits: iterative
deepening

• Example 1: empty board. Result always 0
• Example 2: win for X. Result changes to win score

when win is proven at depth 5
• Interpretation: against best response:

• Black can win in 5 moves
• Black cannot win in 4 or fewer moves

12

Alphabeta and Proofs

• Assume the minimax value of a game is m
• alphabeta search (with no depth limit) computes the

score m
• We can view alphabeta as finding two proofs at the same

time
• Max player can guarantee at least m
• Min player can limit score to at most m

13

Alphabeta and Proofs - Continued

• If we store information about all nodes in the search, then
we have these two strategies stored explicitly

• Also remember the relation to boolean minimax:
• If we know a candidate value m:
• We can do two boolean searches with tests ≥ m and > m
• Together they can verify that m is the minimax result

14

Alphabeta and Playing Optimally - OR Node

• Assume both players follow best play based on the stored
values

• Assume the root n is an OR node with minimax value
score(n) = m

• Children c1, ..., ck :
• score(n) = m = max(score(c1), score(c2), ... score(ck))
• OR player can find (at least) one child ci

with score(ci) = m, and play that move
• This move leads to an AND node

15

Alphabeta and Playing Optimally - AND Node

• ci is an AND node
• score(ci) = m = min(score(ci1), score(ci2), ...
• AND player can find (at least) one child cij

with score(cij) = m, and play that move
• This move leads to an OR node
• Repeat the same arguments until the end of the game

16

Principal Variation (PV)

• If both players play best moves:
they follow a principal variation or PV of the search

• This is a move sequence with the property that
each node in the sequence has a score of m

• Even with a depth-limited search and heuristic evaluation,
a PV exists

• It will only go as deep as the search
• All these nodes have the same value as the

heuristic evaluation of the last node in the sequence

17

Principal Variation and Proof Trees

• Consider the two parts of the proof that the minimax value
is m

• Proof that the max player can get at least m
• Proof that the min player can get m or less

• If both players follow their proof, they will play out a PV
• The reverse is also true:
• Assume both players follow a move sequence S, such that

for all nodes along that sequence the minimax score is m
• Then there exist two proof trees:

• P1 for max
• P2 for min
• S is the intersection of P1 and P2 (set of nodes that are in

both trees)

18

Summary of Basic Solving Algorithms

• Alphabeta and Negamax
• Alphabeta performance similar to boolean negamax here
• Naive negamax much worse, no pruning
• Discussed relation between alphabeta and proof trees
• Principal variation: a line with best play for both

19

Minimax Search Enhancements

20

Search Enhancements - Overview

• Hashing to cache search results
• Transposition table
• From searching a tree to searching a DAG
• Iterative deepening and move ordering
• History heuristic
• More alphabeta search improvements

21

How to Store Information About Search Nodes?

• In our minimax codes so far we did not store any
information on search states

• The searches just returned a boolean, or an integer
• The searches used depth-first order

• Go to first child, then first child of first child,...
• What if we want more detailed search results,

and store them?
• Examples:

• Store the best move
• Store a proof tree
• Store search statistics
• Re-use search results for a later, deeper search

22

Get Best Move and PV

• It is easy to modify search to return both the score and a
PV

• However, the overhead is quite large
• Very many move sequences are created during search
• Almost all of them are discarded later
• Much more efficient approach: use a transposition table
• Can get best move and PV information almost for free
• Several other important benefits

23

Big Idea: Caching Information

• A cache is an information store
• Example: on-chip cache for CPU

• Accesses data much faster than loading from main memory
• Example: cache for rendered web pages

• Data in cache is stored locally as opposed to loading from
web, parsing html, loading images, building on-screen
image, recomputing...

24

Hashing and Transposition Table

• Idea:
Store game positions and its search information

• Examples: minimax score, win/loss flag, best move, search
depth reached in iterative search, number of nodes
searched, timestamp (when solved),...

• How to store?
• Typically, a fixed-size array is used for a search
• For our simple example,

we just use a Python dictionary

25

Storing a TicTacToe Position

• How to store?
• Standard approach: compute a code or hash code for the

position
• Store in the transposition table under this code
• For TicTacToe, less than 39 = 19,683 states total
• Can easily store all states that we search

26

Code for a TicTacToe Position

• Remember our 1-d array representation
• Number code for each point

• EMPTY = 0
• BLACK = 1, used for ’X’
• WHITE = 2, used for ’O’

Board stored in array of size 9:
0 1 2
3 4 5
6 7 8

• View state as array of codes:
• s = [1, 1, 2, 2, 2, 1, 1, 0, 0]

• Example: s[0] = 1 means top left corner is ’X’

27

Store Code and Data in Simple Transposition
Table

• Array of codes: s = [1, 1, 2, 2, 2, 1, 1, 0, 0]
• Code of state: treat codes as a base 3 integer =

112221100 in base 3
• code(s) =

1 × 38 + 1 × 37 + 2 × 36 + 2 × 35+
+2 × 34 + 1 × 33 + 1 × 32 + 0 × 31 + 0 × 30

• Store pairs (code(s), data(s))
• To store in a Python dictionary

• Use code(s) as the key
• Store data(s) as the value under that key

28

Example: Simple Transposition Table

• transposition_table_simple.py
• Store boolean result score (True or False) as value

• It is easy to store best move as well
• Use code as key
• Lookup failure: return None

• Lookup success - return score: True, or False

class TranspositionTable(object):
...
def store(self, code, score):

self.table[code] = score

def lookup(self, code):
return self.table.get(code)

29

Example: Boolean Negamax with Simple
Transposition Table

• boolean_negamax_tt.py

• Always try lookup first
• If succeeds:

• Done, no search needed
• Otherwise:

• Do the regular search
• Store result in table before return from function

def negamaxBoolean(state, tt):
result = tt.lookup(state.code())
if result != None:

return result
...

30

boolean_negamax_tt.py continued

if state.endOfGame():
result = state.staticallyEvaluateForToPlay()
return storeResult(tt, state, result)

for m in state.legalMoves():
state.play(m)
success = not negamaxBoolean(state,tt)
state.undoMove()
if success:

return storeResult(tt, state, True)
return storeResult(tt, state, False)

def storeResult(tt, state, result):
tt.store(state.code(), result)
return result

31

Apply Transposition Table to Solving TicTacToe

• tic_tac_toe_solve_with_tt.py

• About 3x faster than without table
• For larger problems (Go, NoGo, Gomoku, . . .) using the

table can be several orders of magnitude faster

32

Full Transposition Table

• Problem with our simple approach so far:
• Does not scale to large searches
• Using dictionary to store all states will fill memory within

seconds
• For a fast program written in something like C++ anyway...

• We need a solution that works with fixed memory limit
• Only store most important states
• Need information-losing hash codes (see next slide)

33

Example: Code for 19 × 19 Go

• Why do we not always use the full code?
• Example: Full code for 19 × 19 Go
• 3 states per point, 19 × 19 = 361 points
• Total 3361 > 2572 different codes
• Not even considering history here, which is needed for Ko

rule - Go has even more distinct states
• Storing everything in a table is not feasible
• Using full 573+ bit codes is not necessary
• Standard today: use 64 bit codes

34

Zobrist Hash Codes

• How to compute a good 64 bit code for a state?
• Standard: Zobrist hashing, https:
//en.wikipedia.org/wiki/Zobrist_hashing

• Prepare one random number code[point][color] for
each (point, color) combination

• Code of state is bitwise logical xor over all points on the
board

• example:
board[0] = WHITE, board[1] = EMPTY,
board[2] = BLACK,...

• hashcode = code[0][WHITE] xor
code[1][EMPTY] xor code [2][BLACK] xor ...

35

https://en.wikipedia.org/wiki/Zobrist_hashing
https://en.wikipedia.org/wiki/Zobrist_hashing

Bitwise xor in Python

• Option 1: use ˆ

0b1111011 ˆ 0b111001000

• Option 2:
from operator import xor
xor(0b1111011, 0b111001000)

36

Transposition Table in Fixed Size Array

• Where in table to store state s?
• For a fixed size array, we need to compute an array index

from the 64 bit code of s
• Typical solution:

• Use array of some size 2n

• Take the first n bits of code(s) as the array index
• Avoid collisions: store full 64 bit code as part of data
• At each lookup, compare full 64 bit code
• Do not trust 64 bit codes for proofs!

• Verify solution tree without using hashing

37

Transposition Table Entries

• What data to store?
• Depends on type of search
• For boolean negamax we only needed one bit

• True/False minimax value of state
• For alphabeta, iterative deepening, need to store more

• Best move from this state
• Search score
• Flags: exact value or upper or lower bound
• Search depth
• A flag whether it is exact result or heuristic score

• Details - https:
//chessprogramming.org/Transposition_Table

38

https://chessprogramming.org/Transposition_Table
https://chessprogramming.org/Transposition_Table

State Space of TicTacToe

39

Enumerating the State Space of TicTacToe

• TicTacToe has a small enough state space to create and
count all states

• We will do it both for the tree and the DAG model
• How much do we save from using Transposition Table?

40

Estimating the Tree of TicTacToe

• tic_tac_toe_estimate_tree.py

• Estimate for the tree model
• Branching factor: 9 at root, then 8, 7, . . .
• Model as in Lecture 4

Estimated Tic Tac Toe positions in the tree model:
[1,9,72,504,3024,15120,60480,181440,362880,362880]

41

Enumerating the Tree of TicTacToe

• Now we can do the exact count for the tree model
• tic_tac_toe_count_tree.py

def countTicTacToeTree():
t = TicTacToe()
positionsAtDepth = [0] * 10
countAtDepth(t, 0, positionsAtDepth)
print("Tic Tac Toe positions in tree model: ",

positionsAtDepth)

42

Enumerating the Tree of TicTacToe

def countAtDepth(t, depth, positionsAtDepth):
positionsAtDepth[depth] += 1
if t.endOfGame():
return

for i in range(9):
if t.board[i] == EMPTY:

t.play(i)
countAtDepth(t, depth + 1,

positionsAtDepth)
t.undoMove()

43

Enumerating the DAG of TicTacToe

• With transposition table, we can now count the size of the
TicTacToe state space in the DAG model

• Main idea: skip states that we saw before
• tic_tac_toe_count_dag.py

def countTicTacToeDAG():
tt = TranspositionTable()
t = TicTacToe()
positionsAtDepth = [0] * 10
countAtDepth(t, 0, positionsAtDepth, tt)
print("Tic Tac Toe positions in DAG model: ",

positionsAtDepth)

44

Enumerating the DAG of TicTacToe

def countAtDepth(state, depth, positionsAtDepth, tt):
result = tt.lookup(state.code())
if result != None:
return

tt.store(state.code(), True)
positionsAtDepth[depth] += 1
if state.endOfGame(): return
for i in range(9):
if state.board[i] == EMPTY:
state.play(i)
countAtDepth(state, depth + 1,

positionsAtDepth, tt)
state.undoMove()

45

TicTacToe - DAG vs Tree Comparison

Run tic_tac_toe_estimate_tree.py,
tic_tac_toe_count_tree.py,
tic_tac_toe_count_dag.py

Estimated positions in the tree model:
[1, 9, 72, 504, 3024, 15120, 60480, 181440,
362880, 362880]
positions in tree model:
[1, 9, 72, 504, 3024, 15120, 54720, 148176,
200448, 127872]
positions in DAG model:
[1, 9, 72, 252, 756, 1260, 1520, 1140,
390, 78]

46

TicTacToe - DAG vs Tree Discussion

• Tree: estimate is exact at depth 0 . . . 5 (why?)
• DAG: No savings at lower levels (why?)
• Massive savings deeper in DAG

47

Another Application of Transposition Table:
Solve All TicTacToe States

• tic_tac_toe_solve_all.py:
Traverse whole state space

• Solve each state
• Store all solved nodes in transposition table
• Optional activity: modify the code to print each DAG state

only once (use tt)
Solve all TicTacToe states black win/draw/white win
Depth 0: 0 black, 1 draws, 0 white, 1 total positions
Depth 1: 0 black, 9 draws, 0 white, 9 total positions
Depth 2: 48 black, 24 draws, 0 white, 72 total positions
Depth 3: 128 black, 276 draws, 100 white, 504 total positions
Depth 4: 2336 black, 544 draws, 144 white, 3024 total positions
Depth 5: 5472 black, 3168 draws, 6480 white, 15120 total positions
Depth 6: 38016 black, 7200 draws, 9504 white, 54720 total positions
Depth 7: 59472 black, 28800 draws, 59904 white, 148176 total positions
Depth 8: 81792 black, 46080 draws, 72576 white, 200448 total positions
Depth 9: 81792 black, 46080 draws, 0 white, 127872 total positions

48

More Alphabeta Improvements

49

Alphabeta Improvement: Iterative deepening
and Move Ordering

• We have seen iterative deepening before
• Search with depth limit of 1, 2, 3, ...
• Scenario now: heuristic alphabeta search

with a (good) evaluation function
• Even shallow searches will often find a good move
• Remember - alphabeta is most effective if strongest move

is tried first
• Alphabeta window reduced most, can cut more moves
• Idea: first try the strongest move from previous search
• This is a very strong heuristic and used in most alphabeta

implementations

50

Alphabeta Improvement: History Heuristic

• Invented by Jonathan Schaeffer (past Dean of Science) in
1983

• Game-independent improvement
• Idea: keep track of which moves are effective in causing

beta cuts in the search
• Give a bonus for those moves,

try them earlier among all children
• Similar idea: countermove heuristic (Uiterwijk)

- store good reply to a move

51

Many More Alphabeta Enhancements

• Huge number of ideas have been tried in last 70 years
• Examples:

• Minimal window search, Scout, PVS
• Quiescence search
• Parallel search
• Late move reductions

• Very good website:
https://chessprogramming.org/

• Do we still need to learn all these enhancements?

52

https://chessprogramming.org/

Alpha Zero vs Alphabeta Enhancements

Image source: lifein19x19.com

• If the Alpha Zero approach works,
• and if we have enough computing power: no!

53

lifein19x19.com

Summary and Preview

• This concludes our discussion
of standard minimax algorithms

• Next topic: closer look at using knowledge in search
• After that: Monte Carlo Tree Search (MCTS) -

a quite different way to approach minimax search problems
• However, it has the same goals as alphabeta

• Heuristic search: play as well as possible when time limit is
given

• Solve: with unlimited time, eventually find the (perfect play)
minimax solution

• Most work on MCTS is on heuristic search, play well
• Still, also interesting for solving

54

	Intro - Problem Solving for Humans and Computers
	Search and Knowledge
	Minimax Search Enhancements
	State Space of TicTacToe
	More Alphabeta Improvements

