
Computing Science (CMPUT) 455
Search, Knowledge, and Simulations

James Wright

Department of Computing Science
University of Alberta

james.wright@ualberta.ca

Fall 2021

1

james.wright@ualberta.ca


Topics for Today - Lecture 1

• Introduction - What is Cmput 455 about?
• Goals of course - What will I learn?
• Readings, Activities, Resources
• Assessment - quizzes, assignments, exams
• Introduction to the game of Go and Computer Go
• Demo of Python 3 programs Go0 and Go1

2



Coursework

• Do Lecture 1 activities on course webpage
• Read Krakovsky, Reinforcement Renaissance
• Do Quiz 0 and Quiz 1 on eClass (they open after class,

3:20pm Sep 2)

3



Part I

Intro - Problem Solving for Humans
and Computers

4



What is Cmput 455 about?

Broad Goals of this Course:
• The main technologies in modern heuristic search
• From basics all the way to AlphaGo, Alpha Zero, and

beyond
• Gain a full understanding of the foundations
• Study the biggest successes
• See how they came about
• See working code using games such as Go, TicTacToe
• Learn how to apply techniques in own projects

5



Organization - Main Points

• This course has only lectures. No labs
• Activities - do at your own pace (before the deadline)
• Coursework - readings, assignments, quizzes, exams
• Main course site
https://jrwright.info/cmput455/

• All content - slides, assignments, course information
• EClass course site https://eclass.srv.ualberta.
ca/course/view.php?id=72409

• Write quizzes, exams, submit assignments, read/write
forum, announcements, access readings

6

https://jrwright.info/cmput455/
https://eclass.srv.ualberta.ca/course/view.php?id=72409
https://eclass.srv.ualberta.ca/course/view.php?id=72409


Teaching Team, Office Hours, Forum

• Instructors: James Wright (james.wright)
• TAs: Abbas Tork (masoumza), Amir Sattarifard (sattarif)
• We will monitor the eClass forum and answer questions

• Asking questions on the forum is strongly preferred to
emailing me

• Also watch the announcements on eClass
• We will have office hours

• James: After lecture
• Amir: Wednesdays 1-2pm
• Abbas: Fridays 1-2pm
• Also see Teaching Team webpage

7



What Will I Learn - 455 Goal Statements

1. To understand
modern computer problem-solving methods

• which use a combination of search, machine-learned
knowledge, and simulations

2. To achieve a working knowledge of
how to model decision-making tasks

• in both humans and machines

3. To study randomized search methods
such as Monte Carlo Tree Search

• and practice how to improve such programs by machine
learning

8



Topics of Cmput 455

Five topics, 4 - 6 lectures each
1. Introduction - problem solving for humans and computers
2. Search and Knowledge
3. Simulations and Monte Carlo Tree Search
4. Machine Learning for Heuristic Search
5. Reinforcement Learning, AlphaGo and Beyond

9



Background/Prerequisites

• Very weakly defined prerequisites
Any 300-level CS course

• It is a 4th year course
• I assume you have broad general CS knowledge
• I do not assume specific knowledge beyond basics
• Quiz 0 has many questions about your background

10



Dealing with Gaps in Background

• All of you will have different gaps
• We provide some optional reading material to cover gaps

• Examples: Python bootcamp, basic algorithms
• You can refer to those case-by-case, as needed

11



Is Cmput 455 Right for You?

• Goal for now:
• Give you a good estimate of how much work this course is

for you...
• ...before the course drop deadline
• General approach:

• Lower math content
• Focus on important concepts (precise but not too formal)
• Fair bit of experimenting and programming in Python 3

• Know lots already? Optional materials allow you to dig
deeper.

• You can always ask me for more materials

12



Course Resources

• Directly from main course page:
• Course outline, policies, slides, readings, activities, sample

code, assignments
• Other resources linked from main page:

• Python programming
• Algorithms review and sample codes (from Cmput 204)
• Useful software, e.g. Go programs and tools
• Study guides (published before exams)
• Weblinks, blog posts, videos, assorted textbooks,...

13



Python Programming

• We use Python 3 code throughout
• Course code - see website
• Python programming - some references listed, use as

needed
• I expect you can read all sample code given
• I expect you can modify code and write new functions and

tests
• Used in assignments and activities
• Tested in quizzes and exams

14



Coursework and Assessment

• Readings and other activities
• Quizzes
• Coding assignments
• Midterm and final exam on eClass

See outline for percentages of each part

15



Readings And Activities

• Read article or do activity
• Readings and activities prepare and expand topics from

class
• Some also prepare for assignments
• Organized by lecture, on readings and activities webpage

16



Quizzes

• 20% of total marks, 1-2% per week
• One quiz per week, some are double length
• Quizzes review classes, plus some reading/activities
• Marked automatically in eClass
• Selected questions will be reviewed in class afterwards

17



Quiz 0 and 1

• Quiz 0 and 1 published now (1% each)
• Will open on eClass today after class (3:20pm)
• Quiz 0 is “participation only”

• You get marks just for doing it
• Quiz 1 is regular, marked for correctness

• Topic: game of Go
• Review of today’s lecture

18



Coding Assignments

• Relatively small (worth 5% each)
• About 3 weeks for each
• Teams of up to three students

• Read details as part of Activity 1a
• All assignments use the game of gomoku (see later)
• Start from a Go program provided as Python 3 code

• Some of the Activities prepare for assignments

19



Coding Assignments (2)

• Typical tasks: Add functionality, test
• We provide tools for your own testing

• See activities: install Python 3, tools, first Go programs
• Marking done by TA
• Automated scripts to test your code
• Scripts send text commands to your program, check the

answer computed

20



Coding Assignments - Team Submissions

• One submission per team from designated submitter
• Details on webpage: https://jrwright.info/
cmput455/assignments/assignments.html

• Follow format requirements exactly
• Formatting mistakes are a leading cause of frustration and

wasted time for both you and us
• We will post detailed instructions for how you test your

submission

21

https://jrwright.info/cmput455/assignments/assignments.html
https://jrwright.info/cmput455/assignments/assignments.html


Coding Assignments - Testing, Feedback and
Submission

• For each assignment we will provide sample test data
• You must do testing as part of your assignment
• The day after the submission deadline, TA will run

automated tests on a standard lab machine
• You will get feedback, e.g. if files are missing, or if your

program does not run
• Submission deadlines are absolutely firm

22



Coding Assignments - Late Submission

• You can do a late submission, for any reason
• Deadline is 2 days after the regular deadline
• Late submissions are marked with a 20% deduction
• Example: if your normal submission did not work, the TA

will tell you the problems found by the script. Fix them and
do a late submission.

• Important: the only way to react to, and fix, submission
problems is for problems with the regular submission.
There is no second round of feedback on late
submissions.

23



Assignment 1

• Assignment 1 published on website
• Start from our sample code, the Go0 program
• You will modify it in the assignment
• Preview in second lecture

24



Midterm and Final Exam

• Will be conducted over eClass
• Will follow format of the Quizzes
• Study guide will be published before each exam

25



Honesty and Plagiarism

• Don’t cheat. We will check
• Be aware of collaboration rules
• Link to rules: on policies page

26



Summary

• Discussed content, format, rules and expectations for this
course

• Everything is on web for your later reference
• Do use the eClass discussion forum
• Do use the instructor and TA office hours

27



Introduction to Go and Computer Go

Topics:
• Game of Go
• Rules of Go
• Scoring
• Strength of Go players and rating system
• Quick introduction to computer Go
• Random Go player Go0
• Go1: fix Go0 to make it finish a game

28



Game of Go

Image source: https://upload.

wikimedia.org/wikipedia/

commons/2/2a/FloorGoban.JPG

• Classic two player board game
• Most popular in East Asia
• Invented thousands of years ago

in China
• Simple rules, complex strategy
• Played by millions
• Hundreds of top human experts

- professional players

29

https://upload.wikimedia.org/wikipedia/commons/2/2a/FloorGoban.JPG
https://upload.wikimedia.org/wikipedia/commons/2/2a/FloorGoban.JPG
https://upload.wikimedia.org/wikipedia/commons/2/2a/FloorGoban.JPG


Game of Go Rules - Basics

1

1

2

• Start with an empty grid
• Usual size is 19 × 19
• We will often use 7 × 7 in this course
• Two players Black and White
• Black goes first
• Move: place a stone of your color on an

intersection
• An intersection is also called a point

• Example: empty board, first move by
Black, second move by White

30



Game of Go Rules - Blocks

C

A

C

C

C C

D

D

D

B

D

D

D

B

D

D

D

• Connected stones of the same
color are called blocks

• A is a single stone block
• Two stones B are connected by

a line. They are one block
• C is a single block of 5 white

stones
• D is a block of 9 black stones
• A and C are not in the same

block
• No connection diagonally

31



Game of Go Rules - Liberties

A

B

C

D

E

F

1

F

• Empty points adjacent to a block
are called liberties

• The single marked white stone
has four Liberties A, B, C, D

• The block of two marked white
stones has two liberties, E and F

• After Black plays on 1, the white
stones have only one liberty at F
left

• A block that loses its last liberty
is captured (see next slide)

32



Game of Go Rules - Capture

A 1

• The block of two white stones has only one liberty at A
• Black can play there
• Effect: the two stones are captured
• Removed from the board

33



Illegal Move - Suicide

A

• Example with White to play
• White at A would be suicide
• White would take its own last

liberty
• Suicide is forbidden

in most versions of Go rules
• In this course:

we never allow suicide
• Capturing always takes

precedence over suicide - see
next slide

34



Capture vs Suicide: Example 1

• Top left:
move A for Black looks like suicide

• However, move A also
takes the last liberty
of the three white stones

• Move A is a capture as well
• Capture takes precedence over suicide
• Move A is legal for Black

35



Capture vs Suicide: Example 1

• Top left:
move A for Black looks like suicide

• However, move A also
takes the last liberty
of the three white stones

• Move A is a capture as well
• Capture takes precedence over suicide
• Move A is legal for Black

35



Capture vs Suicide: Example 2

• Is B a legal move?

• It looks like suicide for White at first sight
• However, it also captures four single

black stones
• Capture takes precedence
• Yes, move B is legal

36



Capture vs Suicide: Example 2

• Is B a legal move?
• It looks like suicide for White at first sight
• However, it also captures four single

black stones
• Capture takes precedence
• Yes, move B is legal

36



Capture vs Suicide: Example 2 Continued

• After the capture, the new white stone
does have liberties

• This holds in general - after any legal
move, all blocks have at least one liberty

• What if you find a block without liberties
in your game?

• You made an illegal move
• Or you forgot to remove some captured

stones (more likely)
• Of course, correct Go programs should

never get into such a state
• For Black to play B,

would be illegal - suicide

37



Repetition Rules - Basic Ko

• From top to middle picture: White can
capture one black stone by playing A

• From middle to bottom picture: Now if
Black captures back one white stone...

• The position would repeat, infinite loop
• This is called a (basic) ko.
• Go rules forbid such repetition

38



Resolving a Ko Situation

• Ko rule: after White captured, Black
cannot re-capture right away

• Q: How to resolve the situation?

• Black must play somewhere else
• Now White has a chance to connect
• If White also plays elsewhere, then

Black can capture
• There are more complex ways to create

illegal loops (may discuss later)
• Basic Ko is by far the most common

39



Resolving a Ko Situation

• Ko rule: after White captured, Black
cannot re-capture right away

• Q: How to resolve the situation?
• Black must play somewhere else
• Now White has a chance to connect
• If White also plays elsewhere, then

Black can capture
• There are more complex ways to create

illegal loops (may discuss later)
• Basic Ko is by far the most common

39



Game of Go Rules - Legal Moves

• Legal move:
play on any empty intersection,
except points forbidden by:

• repetition (ko rule)
• suicide

• Example:
legal moves for Black, after
White captured a ko

• A4 forbidden by repetition
(ko rule)

• B3 forbidden by suicide

40



Legal Moves - Pass Move

• Pass move is always allowed
• Board does not change
• It is now the other player’s turn to play

• Usually, there are some moves better than Pass
• Competent players only pass at end of game

41



End of Game and Scoring

• Game ends after two successive
passes

• Some rule versions require three
passes

• Next, count the score for each player -
stones plus territory

• Add the komi (adjustment for going
second)

• The winner is the player with higher
score

• Draws are possible if the komi is integer

42



Scoring Example

• Assume komi = 7.5
• Black score = 37

• 13 Black stones +
• 24 empty points surrounded by Black

• White score = 51.5
• 17 White stones +
• 27 empty points surrounded by White +
• 7.5 komi

• White wins by 51.5 - 37 = 14.5 points

43



Playing Strength and Rating System

Top 20 Go players, January 2017.

Source:

https://www.goratings.org

• Rating system with
amateur student (kyu) and
master (dan) grades

• Separate rating system
for professional players

• Numerical rating systems,
similar to Elo in chess

• No single wordwide system,
each organization has their own

44

https://www.goratings.org


How to Learn to Play Go

• Becoming a serious Go player is not required for this
course

• However, you should understand the basic concepts well
• Many Go-related resources on our course resource page

• Internet Go servers, video lessons, addresses of clubs,
computer opponents

45



Quick Introduction to Computer Go

• Computer Go, from beginnings to AlphaGo
• Examples: Go0 and Go1,

random Go players written in Python 3

• How to program a computer to play Go?
• Studied for over 50 years
• Considered the hardest of the classical games

46



Computer Go - Beginnings

Nemesis, an early commercial Go
program.

Source:

http://blogs.discovermagazine.

com/science-sushi/2016/03/10/

go-ai-alphago-nemesis

Early programs:
• Hand-written rules and patterns

to generate moves
• Try to implement human Go

knowledge
• Specialized goal-oriented search

to capture stones
• Level: advanced beginner
• Slow progress

47

http://blogs.discovermagazine.com/science-sushi/2016/03/10/go-ai-alphago-nemesis
http://blogs.discovermagazine.com/science-sushi/2016/03/10/go-ai-alphago-nemesis
http://blogs.discovermagazine.com/science-sushi/2016/03/10/go-ai-alphago-nemesis


Computer Go - Monte Carlo Tree Search

Monte Carlo Tree Search Revolution.

Image source: acm.org

• Monte Carlo Tree Search
(MCTS)

• Developed about 12 years ago
• Breakthrough in playing strength
• Small boards (7 × 7,9 × 9): level

of top human professionals
• 19 × 19: Close to top amateur

after 6-7 years of research
• Clearly weaker than

professionals
• MCTS was first applied to Go
• Today, used for many other

decision-making problems

48

acm.org


Computer Go - AlphaGo

Picture of David Silver’s talk at UCL,

unknown photographer

• 2015 - 2017:
AlphaGo quickly surpasses
human professionals

• Project by Deepmind in London
• Led by two UofA alumni, David

Silver and Aja Huang
• MCTS, deep convolutional

neural networks, deep
reinforcement learning

• Far exceeds human abilities
• Matches and sample games:
www.alphago-games.com

49

www.alphago-games.com


Computer Games - Beyond AlphaGo

• AlphaZero: learn from rules and selfplay only, no other
human knowledge

• MuZero: learn rules as well, from sample games
• Poker, Atari, Starcraft, etc. - beyond classic board games

50



Go Program Demo

• We use our own simple Go programs in this class
• Written in Python 3
• Communicate via GTP - a text-based interface

• Can run it directly from console
• Often easier to use a graphical user interface
• See Activity 2D (“Install Gogui”):
https://jrwright.info/cmput455/html/
activities.html

51

https://jrwright.info/cmput455/html/activities.html
https://jrwright.info/cmput455/html/activities.html


Go0: Random Player on 7 × 7 Board

• Go0 is our first example
• Algorithm:

• Create list L of all legal moves on board
• If L is empty, then play pass
• Else select one move m from L uniformly at random
• Play m

• Python 3 program: Go0.py
• Our demo uses a 7 × 7 board

52



Problem With Go0 Player

A

A

• Go0 fills the board, but then ...
• It never seems to stop with two passes
• It cannot keep any stones safe
• It fills its own liberties and territories
• Eventually, even strong-looking stones

get captured
• Game never ends...

53



How to Fix the Go0 Player?

• Plan: disable some of the most obvious stupid moves
• Make sure the game ends in reasonable time
• Make sure safe stones don’t get captured
• Surrounding territory is a big part of Go
• Filling one’s own territory afterwards is usually bad
• Simplest case: “one point eyes”

54



Eyes

• An eye is a point that is
surrounded by one color

• An eye makes stones safer
• Opponent cannot play in eyes

surrounded by black stones
• Suicide, illegal to play there for

white

55



One Eye is Not Enough

A

B

C

• One eye is not enough
• Moves inside eyes A, B, C

become legal if they are a
capture

• Examples: move A takes the
last liberty of the three
surrounding black stones

• One eye helps, but not enough
for safety

56



Stones with Two Eyes are Safe

1

2

• Here, Black has one block
surrounding two eyes 1 and 2

• White cannot attack
• Both 1 and 2 are suicide for

white
• Black is safe as long as Black

leaves the eyes alone
• Black should NEVER play 1 or 2

• Can always pass,
if no good moves left

57



How to Recognize a Simple Eye?

Simple eyes for
Black:
1. top left corner
2. right edge of
board
3. center

Definition of simple eye:
1. Single empty point p
2. All neighbor points nb(p)

occupied by stones of the same
color

3. All these stones are connected in
a single block

• Question:
by the definition above, which
points are simple eyes for White?

• There are other, more complex
kinds of eyes (later)

58



Detecting Simple Eyes Locally

• Can detect most simple eyes locally
• Only look at neighbors and

diagonals
• Corner, edge:

need all diagonal points to connect
(1 in corner, 2 on edge)

• Center: need at least 3 of 4
diagonal points to connect

• Can connect along some longer path
• Pretty rare, ignored in Go1
• Example: A7 is an eye

Stones A6 and B7 connected over
a long path

59



Simple Eyes - Summary

• Random player keeps playing senselessly...
...unless we stop it from filling its eyes

• A simple eye is an empty point,
surrounded by a connected block of stones

• A local connection check finds almost all simple eyes
• Very fast to check in program, only look at a maximum of 8

neighbors and diagonals
• Having two (or more) eyes

makes a block safe from capture

60



From Go0 to Go1

• Go1 algorithm avoids filling simple eyes
• Implementation in board_util.py function
generate_random_move

moves = board.get_empty_points()
np.random.shuffle(moves)
for move in moves:

legal = not board.is_eye(move, color) \
and board.is_legal(move, color)

if legal:
return move

return PASS

61



Go1 in Practice

• Go1 program ends game with
two passes in the position at left

• Go0 would continue senselessly,
fill eyes, capture etc.

• Go1 is still mostly random
• It stops when all moves fill

simple eyes
• First usable version of our

program
• Basis for all future programs

which add search, simulations,
knowledge

62


	Intro - Problem Solving for Humans and Computers

