Curling: Why The _ Do You _?
 Zaheen Ahmad

Rational Behaviour

- Rational agents play to maximize expected utility in games
- Humans are not always rational in reality
- Difficult to analyze rationality in all games

Curling

- Sport played on ice
- Two teams, 10 rounds (ends), 16 shots per round

Curling - Shooting

Curling - Scoring

Hammer Shots

- Last shot of an end
- Largely determines the outcome of an end
- Other shots mainly set up the hammer shot
- Teams have a 55.7% chance of winning beginning game with hammer

Strategies in Curling

- Intuitively, we'd think about scoring as much as we can per end
- The best sequences of shots to establish a good hammer shot (if we possess it)
- But retain the hammer in ends that count more

Willoughby and Kostuk, 2004

Points vs Hammer

- Last end
- Is it better to be:
- +1, without hammer
- -1, with hammer

Model

$$
P(X=k \mid e, h)
$$

- k, points scored
- e, end number
- h, possession of hammer
- 410 games, 221 up to 10 ends

Frequency Tables of Scores

END	-4	-3	-2	-1	0	1	2	3	4	5	
10	1	5	4	39	12	113	34	8	4	1	221
11			2	9	4	55	4	1	1		76
12						3	1				

Results and Comparison

- $E(U P$, Not Hammer) $=0.713$
- $E(D O W N$, Hammer $)=0.287$
- Contrasts with players from survey of 113
- UP, Not Hammer = 41.6
- DOWN, Hammer = 58.4

Willoughby and Kostuk, 2005

Blank the 9th End?

- Keep the house clean in 9th end
- TAKE 1 or BLANK end?

Frequency Tables of Scores

After 9th	-4	-3	-2	-1	0	1	2	3	4	5	
0			3	15	8	70	12	2			110
1	1	5	4	39	12	113	34	8	4	1	221
2		1	1	20	1	16	34	1			74
3			1	1	1	1		1			5
	1	6	9	75	22	200	80	12	4	1	410

Results of Shots

Beginning of 9th	E(TAKE)	E(BLANK)
$\mathbf{3}$	1.0000	1.0000
$\mathbf{2}$	0.9678	0.9843
$\mathbf{1}$	0.9125	0.9263
$\mathbf{0}$	0.7050	0.8247
$\mathbf{- 1}$	0.1753	0.2950
$\mathbf{- 2}$	0.0737	0.0875
$\mathbf{- 3}$	0.0157	0.0322

Blank the 9th End

- Regardless of situation
- BLANK in 9th end, retain hammer
- Only consider draw for one

Something's Not Right

- Aggregated -1 and 1 differentials together
- Playing when down by 1 is different than when up by 1
- Only looks at differentials of 1

Clement, 2012

Blanking Other Ends

- The author expanded on BLANK or TAKE on other ends
- Multinomial logistic regression + transition matrices

Regression Model

- Trained on game data
- Features: skill difference, point difference, end number
- Label: the distribution of scores of the end

Inference

- Sample from the regression model to get distributions at ends
- Create the transition matrix using distributions
- Calculate the win probabilities using the transitions matrix given the scores at each end
- Difference between blanking and taking one (with leads -1 and 1)

Win Probability Differences

Win Probability Differences

Win Probabilities

	lead $=-1$				lead = 1			
end	men		women		men		women	
	blank	take 1						
3	0.44	0.40	0.44	0.42	0.75	0.72	0.71	0.69
4	0.44	0.40	0.43	0.42	0.76	0.73	0.72	0.70
5	0.44	0.39	0.44	0.40	0.78	0.75	0.73	0.71
6	0.42	0.39	0.41	0.40	0.80	0.77	0.75	0.73
7	0.43	0.36	0.42	0.40	0.84	0.77	0.75	0.74
8	0.38	0.36	0.38	0.41	0.86	0.83	0.82	0.77
9	0.44	0.22	0.49	0.35	0.91	0.86	0.83	0.83

- All work only consider differences of 1 point
- Focus on late ends (or aggregates early ends)
- Is it better to blank earlier ends or take points
- Expand to taking more than 1 point

Win Probability Table

Lead

| | $\mathbf{1 0}$ | $\mathbf{9}$ | $\mathbf{8}$ | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{- 4 :}$ | 10.1 | 9.6 | 8.8 | 8.0 | 6.6 | 6.0 | 4.3 | 2.9 | 1.2 | 0.1 |
| $\mathbf{- 3 :}$ | 17.4 | 15.6 | 15.9 | 15.0 | 14.6 | 12.7 | 10.8 | 8.4 | 5.3 | 2.0 |
| $\mathbf{- 2 :}$ | 28.7 | 27.3 | 27.5 | 26.9 | 25.5 | 25.2 | 22.2 | 22.0 | 15.2 | 12.1 |
| -1: | 42.7 | 41.9 | 42.1 | 41.1 | 40.3 | 41.6 | 38.4 | 41.9 | 31.8 | 42.7 |
| +0: | 55.7 | 55.1 | 55.7 | 56.6 | 57.3 | 59.6 | 58.1 | 62.2 | 57.6 | 71.9 |
| $\mathbf{+ 1 :}$ | 71.3 | 70.9 | 72.1 | 72.4 | 74.0 | 75.1 | 75.9 | 79.0 | 83.0 | 88.4 |
| $\mathbf{+ 2 :}$ | 81.8 | 83.2 | 82.8 | 84.8 | 85.5 | 86.9 | 88.3 | 91.3 | 94.3 | 98.0 |
| $\mathbf{+ 3 :}$ | 89.9 | 90.2 | 91.1 | 91.9 | 93.0 | 93.8 | 95.3 | 97.3 | 98.6 | 99.7 |
| $\mathbf{+ 4 :}$ | 94.9 | 95.2 | 95.8 | 96.3 | 97.3 | 97.6 | 98.7 | 99.2 | 99.7 | 100.0 |

Approaches

- More complex models to learn better representations of data
- Simulated experiments
- Curling simulator
- Al search for strategies and outcomes

