Curling: Why The \_ Do You \_? Zaheen Ahmad

- games
- Humans are not always rational in reality
- Difficult to analyze rationality in all games

### **Rational Behaviour**

### Rational agents play to maximize expected utility in





- Sport played on ice
- Two teams, 10 rounds (ends), 16 shots per round



## Curling - Shooting



# Curling - Scoring

### Hammer Shots

- Last shot of an end
- Largely determines the outcome of an end
- Other shots mainly set up the hammer shot
- Teams have a 55.7% chance of winning beginning game with hammer

# Strategies in Curling

- end
- shot (if we possess it)
- But retain the hammer in ends that count more

### Intuitively, we'd think about scoring as much as we can per

### The best sequences of shots to establish a good hammer

Willoughby and Kostuk, 2004

### Points vs Hammer

- Last end
- Is it better to be:
  - +1, without hammer
  - -1, with hammer



### $P(X = k \mid e, h)$

- k, points scored
- e, end number
- h, possession of hammer
- 410 games, 221 up to 10 ends



### **Frequency Tables of Scores**

| END | -4 | -3 | -2 | -1 | 0  | 1   | 2  | 3 | 4 | 5 |     |
|-----|----|----|----|----|----|-----|----|---|---|---|-----|
| 10  | 1  | 5  | 4  | 39 | 12 | 113 | 34 | 8 | 4 | 1 | 221 |
| 11  |    |    | 2  | 9  | 4  | 55  | 4  | 1 | 1 |   | 76  |
| 12  |    |    |    |    |    | 3   | 1  |   |   |   |     |

### **Results and Comparison**

- E(UP, Not Hammer) = 0.713
- E(DOWN, Hammer) = 0.287
- Contrasts with players from survey of 113
  - UP, Not Hammer = 41.6
  - DOWN, Hammer = 58.4

Willoughby and Kostuk, 2005

### Blank the 9th End?

- Keep the house clean in 9th end
- TAKE 1 or BLANK end?

### **Frequency Tables of Scores**

| After<br>9th | -4 | -3 | -2 | -1 | 0  | 1   | 2  | 3  | 4 | 5 |     |
|--------------|----|----|----|----|----|-----|----|----|---|---|-----|
| 0            |    |    | 3  | 15 | 8  | 70  | 12 | 2  |   |   | 110 |
| 1            | 1  | 5  | 4  | 39 | 12 | 113 | 34 | 8  | 4 | 1 | 221 |
| 2            |    | 1  | 1  | 20 | 1  | 16  | 34 | 1  |   |   | 74  |
| 3            |    |    | 1  | 1  | 1  | 1   |    | 1  |   |   | 5   |
|              | 1  | 6  | 9  | 75 | 22 | 200 | 80 | 12 | 4 | 1 | 410 |



| Beginning of 9th | E(TAKE) | E(BLANK) |
|------------------|---------|----------|
| 3                | 1.0000  | 1.0000   |
| 2                | 0.9678  | 0.9843   |
| 1                | 0.9125  | 0.9263   |
| 0                | 0.7050  | 0.8247   |
| -1               | 0.1753  | 0.2950   |
| -2               | 0.0737  | 0.0875   |
| -3               | 0.0157  | 0.0322   |

### **Results of Shots**

### Blank the 9th End

- Regardless of situation
- BLANK in 9th end, retain hammer
- Only consider draw for one

# Something's Not Right

- Aggregated -1 and 1 differentials together
- Only looks at differentials of 1

Playing when down by 1 is different than when up by 1

Clement, 2012

- Multinomial logistic regression + transition matrices

### Blanking Other Ends

### The author expanded on BLANK or TAKE on other ends



- Trained on game data
- Features: skill difference, point difference, end number
- Label: the distribution of scores of the end

### **Regression Model**

### Inference

- Sample from the regression model to get distributions at ends
- Create the transition matrix using distributions
- Calculate the win probabilities using the transitions matrix given the scores at each end
- Difference between blanking and taking one (with leads -1 and 1)

# Win Probability Differences



# Win Probability Differences



### Win Probabilities

|     |       | lead   | = -1  |        | lead = 1 |        |       |        |  |
|-----|-------|--------|-------|--------|----------|--------|-------|--------|--|
| end | men   |        | women |        | men      |        | women |        |  |
|     | blank | take 1 | blank | take 1 | blank    | take 1 | blank | take 1 |  |
| 3   | 0.44  | 0.40   | 0.44  | 0.42   | 0.75     | 0.72   | 0.71  | 0.69   |  |
| 4   | 0.44  | 0.40   | 0.43  | 0.42   | 0.76     | 0.73   | 0.72  | 0.70   |  |
| 5   | 0.44  | 0.39   | 0.44  | 0.40   | 0.78     | 0.75   | 0.73  | 0.71   |  |
| 6   | 0.42  | 0.39   | 0.41  | 0.40   | 0.80     | 0.77   | 0.75  | 0.73   |  |
| 7   | 0.43  | 0.36   | 0.42  | 0.40   | 0.84     | 0.77   | 0.75  | 0.74   |  |
| 8   | 0.38  | 0.36   | 0.38  | 0.41   | 0.86     | 0.83   | 0.82  | 0.77   |  |
| 9   | 0.44  | 0.22   | 0.49  | 0.35   | 0.91     | 0.86   | 0.83  | 0.83   |  |

- All work only consider differences of 1 point
- Focus on late ends (or aggregates early ends)
- Is it better to blank earlier ends or take points
- Expand to taking more than 1 point

## Win Probability Table

### Lead

|     | 10   | 9    | 8    | 7    |
|-----|------|------|------|------|
| -4: | 10.1 | 9.6  | 8.8  | 8.0  |
| -3: |      | 15.6 | 15.9 | 15.0 |
| -2: | 28.7 | 27.3 | 27.5 | 26.9 |
| -1: |      | 41.9 | 42.1 | 41.1 |
| +0: | 55.7 | 55.1 | 55.7 | 56.6 |
| +1: |      | 70.9 | 72.1 | 72.4 |
| +2: | 81.8 | 83.2 | 82.8 | 84.8 |
| +3: |      | 90.2 | 91.1 | 91.9 |
| +4: | 94.9 | 95.2 | 95.8 | 96.3 |

### **Ends Remaining**

| 6    | 5    | 4    | 3    | 2    | 1     |
|------|------|------|------|------|-------|
| 6.6  | 6.0  | 4.3  | 2.9  | 1.2  | 0.1   |
| 14.6 | 12.7 | 10.8 | 8.4  | 5.3  | 2.0   |
| 25.5 | 25.2 | 22.2 | 22.0 | 15.2 | 12.1  |
| 40.3 | 41.6 | 38.4 | 41.9 | 31.8 | 42.7  |
| 57.3 | 59.6 | 58.1 | 62.2 | 57.6 | 71.9  |
| 74.0 | 75.1 | 75.9 | 79.0 | 83.0 | 88.4  |
| 85.5 | 86.9 | 88.3 | 91.3 | 94.3 | 98.0  |
| 93.0 | 93.8 | 95.3 | 97.3 | 98.6 | 99.7  |
| 97.3 | 97.6 | 98.7 | 99.2 | 99.7 | 100.0 |



- data
- Simulated experiments
  - Curling simulator
  - Al search for strategies and outcomes

### More complex models to learn better representations of