Repeated Games

CMPUT 654: Modelling Human Strategic Behaviour

S\&LB §6.1

Lecture Outline

1. Recap
2. Repeated Games
3. Infinitely Repeated Games
4. The Folk Theorem

Recap: Imperfect Information Extensive Form Game

Definition:

An imperfect information game in extensive form is a tuple $G=(N, A, H, Z, \chi, \rho, \sigma, u, I)$, where

- ($N, A, H, Z, \chi, \rho, \sigma, u$) is a perfect information extensive form game, and
- $I=\left(I_{1}, \ldots, I_{n}\right)$, where $I_{i}=\left(I_{i, 1}, \ldots, I_{i, k_{i}}\right)$ is an equivalence relation on (i.e., partition of) $\{h \in H: \rho(h)=i\}$ with the property that $\chi(h)=\chi\left(h^{\prime}\right)$ and $\rho(h)=\rho\left(h^{\prime}\right)$ whenever there exists aj for which $h \in I_{i, j}$ and $h^{\prime} \in I_{i, j}$.

Recap: Imperfect Information Extensive Form Example

- The members of the equivalence classes are sometimes called information sets
- Players cannot distinguish which history they are in within an information set

Recap: Behavioural vs. Mixed Strategies

Definition:

A mixed strategy $s_{i} \in \Delta\left(A^{l_{i}}\right)$ is any distribution over an agent's pure strategies.

Definition:

A behavioural strategy $b_{i} \in[\Delta(A)]^{I_{i}}$ is a probability distribution over an agent's actions at an information set, which is sampled independently each time the agent arrives at the information set.

Kuhn's Theorem:

These are equivalent in games of perfect recall.

- Unlike perfect information games, we can go in the opposite direction and represent any normal form game as an imperfect information extensive form game

Repeated Game

- Some situations are well-modelled as the same agents playing a normalform game multiple times
- The normal-form game is the stage game; the whole game of playing the stage game repeatedly is a repeated game
- The stage game can be repeated a finite or an infinite number of times
- Questions to consider:

1. What do agents observe?
2. What do agents remember?
3. What is the agents' utility for the whole repeated game?

Finitely Repeated Game

Suppose that n players play a normal form game against each other $k \in \mathbb{N}$ times.

Questions:

1. Do they observe the other players' actions? If so, when?
2. Do they remember what happened in the previous games?
3. What is the utility for the whole game?
4. What are the pure strategies?

Representing Finitely Repeated Games

- Recall that we can represent normal form games as imperfect information extensive form games
- We can do the same for repeated games:

	c d	
C	-1,-1	-4,0
D	0,-4	-3,-3
	and then	
	c	
C	-1,-1	-4,0
D	0,-4	-3,-3

Fun (Repeated) Game

c		c
	C	$-1,-1$

c		d
C	$-1,-1$	$-4,0$
D	$0,-4$	$-3,-3$

c		d
C	$-1,-1$	$-4,0$
D	$0,-4$	$-3,-3$

c		c
c	d	
C	$-1,-1$	$-4,0$
D	$0,-4$	$-3,-3$

	c	c
	d	
C	$-1,-1$	$-4,0$
D	$0,-4$	$-3,-3$

- Play the Prisoner's Dilemma five times in a row against the same person
- Play at least two people

Properties of Finitely Repeated Games

- Playing an equilibrium of the stage game at every stage is an equilibrium of the repeated game
- Instance of a stationary strategy
- In general, pure strategies can depend on the previous history
- Question: When the normal form game has a
 dominant strategy, what can we say about the equilibrium of the finitely repeated game?

Infinitely Repeated Game

Suppose that n players play a normal form game against each other infinitely many times.

Questions:

1. Do they remember what happened in the previous games?
2. What is the utility for the whole game?
3. What are the pure strategies?
4. Can we write these games in the imperfect information extensive form?

Payoffs in Infinitely Repeated Games

- We cannot just take the sum of payoffs in an infinitely repeated game, because there are infinitely many of them
- We can't just put the overall utility on the terminal nodes, because there aren't any
- Two possible approaches:

1. Average reward: Take the limit of the average reward to be the overall reward of the game
2. Discounted reward: Apply a discount factor to future rewards to guarantee that they will converge

Average Reward

Definition:

Given an infinite sequence of payoffs $r_{i}^{(1)}, r_{i}^{(2)}, \ldots$ for player i, the average reward of i is

$$
\lim _{k \rightarrow \infty} \sum_{j=1}^{k} \frac{r_{i}^{(j)}}{k}
$$

- Problem: May not converge (why?)

Discounted Reward

Definition:

Given an infinite sequence of payoffs $r_{i}^{(1)}, r_{i}^{(2)}, \ldots$ for player i, and a discount factor $0 \leq \beta \leq 1$, the future discounted reward of i is

- Interpretations:

1. Agent is impatient: cares more about rewards that they will receive earlier than rewards they have to wait for
2. Agent cares equally about all rewards, but at any given round the game will stop with probability 1- β

- The two interpretations have identical implications for analyzing the game

Strategy Spaces in Infinitely Repeated Games

Question: What is a pure strategy in an infinitely repeated game?

Definition:

For a stage game $\mathrm{G}=(\mathrm{N}, \mathrm{A}, \mathrm{u})$, let

$$
A^{*}=\{\varnothing\} \cup A^{1} \cup A^{2} \cup \cdots=\bigcup_{t=0}^{\infty} A^{t}
$$

be the set of histories of the infinitely repeated game. Then a pure strategy of the infinitely repeated game for an agent i is a mapping

$$
s_{i}: A^{*} \rightarrow A_{i}
$$

from histories to player i's actions.

Equilibria in Infinitely Repeated Games

- Can we characterize the set of equilibria for an infinitely repeated game?
- Can't appeal to Nash's Theorem, because it only applies to finite games
- Can't build the induced normal form, there are infinitely many pure strategies
- There could even be infinitely many pure strategy Nash equilibria!
- We can characterize the set of payoff profiles that are achievable in an equilibrium, instead of characterizing the equilibria themselves

Enforceable

Definition:

Let $v_{i}=\min _{s_{-i} \in S_{-i}} \max _{s_{i} \in S_{i}} u_{i}\left(s_{i}, s_{-i}\right)$ be i's minmax value in $G=(N, A, u)$.
Then a payoff profile $r=\left(r_{1}, \ldots, r_{n}\right)$ is enforceable if $r_{i}>=v_{i}$ for all $i \in N$.

- A payoff vector is enforceable (on i) if the other agents working together can ensure that i 's utility is no greater than r_{i}.

Feasible

Definition:

A payoff profile $r=\left(r_{1}, \ldots, r_{n}\right)$ is feasible if there exist rational, nonnegative values α_{a} such that for all i,

$$
r_{i}=\sum_{a \in A} \alpha_{a} u_{i}(a),
$$

with $\sum_{a} \alpha_{a}=1$.

- A payoff profile is feasible if it is a (rational) convex combination of the outcomes in G.

Folk Theorem

Theorem:

Consider any n-player normal form game G and payoff profile $r=\left(r_{1}, \ldots, r_{n}\right)$.

1. If r is the payoff profile for any Nash equilibrium of the infinitely repeated G with average rewards, then r is enforceable.
2. If r is both feasible and enforceable, then r is the payoff profile for some Nash equilibrium of the infinitely repeated G with average rewards.

- Whole family of similar proofs for discounted rewards case, subgame perfect equilibria, etc.

Folk Theorem Proof Sketch: Nash \Rightarrow Enforceable

- Suppose for contradiction that r is not enforceable
- Consider the strategy $s^{\prime} ;(h)=B R_{i}\left(s_{-i}(h)\right)$, where s_{-i} is the equilibrium strategy of the other players
- Player i receives at least $v_{i}>r_{i}$ in every stage game by playing strategy s'i (why?)
- So strategy s'i is a utility-increasing deviation from s, and hence s is not an equilibrium

Folk Theorem Proof Sketch: Enforceable \& Feasible = Nash

- Suppose that r is both feasible and enforceable
- We can construct an equilibrium that visits each action profile a with frequency the α_{a} (since the α_{a} s are all rational)
- At every history where a player i has not played their part of the cycle, all of the other players switch to playing the minmax strategy against i (this is called a Grim Trigger strategy)
- That makes i's overall utility for the game $v_{i}<=r_{i}$ for any deviation (why?)
- Thus there is no utility-increasing deviation for i

Summary

- A repeated game is one in which agents play the same normal form game (the stage game) multiple times
- Finitely repeated: Can represent as an imperfect information extensive form game
- Infinitely repeated: Life gets more complicated
- Payoff to the game: either average or discounted reward
- Pure strategies map from entire previous history to action
- Folk theorem characterizes what payoff profiles can arise in any equilibrium
- All profiles that are both enforceable and feasible

