Repeated Games

CMPUT 654: Modelling Human Strategic Behaviour

S&LB §6.1

Lecture Outline

- Recap 1.
- 2. Repeated Games
- 3. Infinitely Repeated Games
- 4. The Folk Theorem

Recap: Imperfect Information Extensive Form Game

Definition: $G = (N, A, H, Z, \chi, \rho, \sigma, u, I)$, where

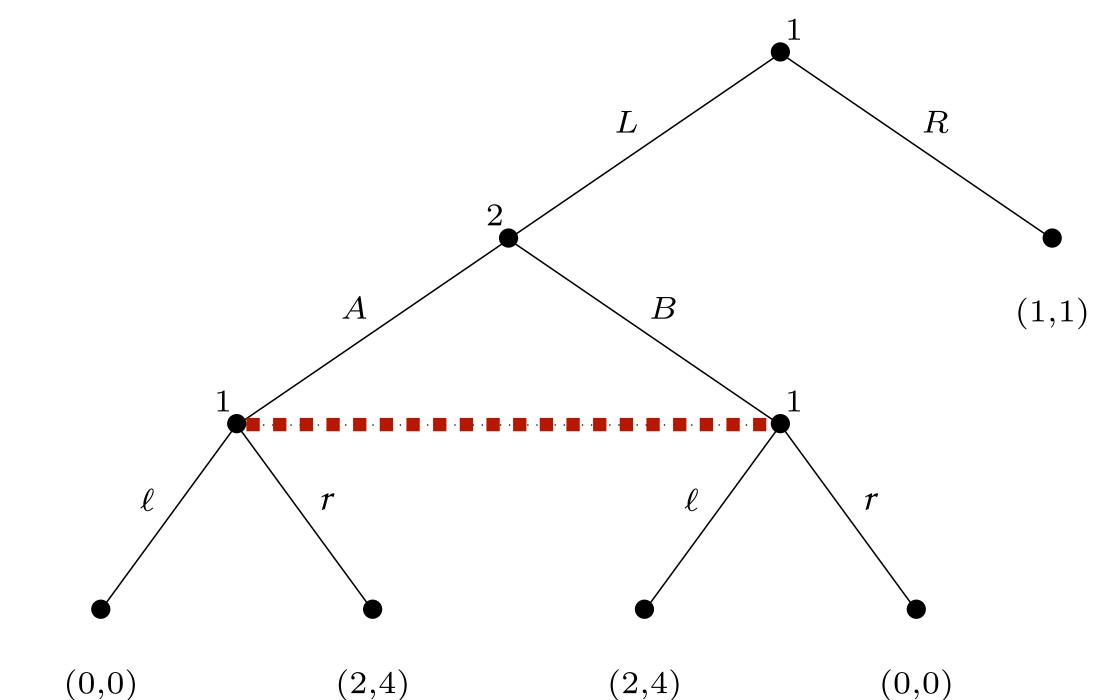
- and
- (i.e., partition of) $\{h \in H : \rho(h) = i\}$ with the property that $h \in I_{i,j}$ and $h' \in I_{i,j}$.

An imperfect information game in extensive form is a tuple

• $(N, A, H, Z, \chi, \rho, \sigma, u)$ is a perfect information extensive form game,

• $I = (I_1, ..., I_n)$, where $I_i = (I_{i,1}, ..., I_{i,k_i})$ is an equivalence relation on $\chi(h) = \chi(h')$ and $\rho(h) = \rho(h')$ whenever there exists a *j* for which

Recap: Imperfect Information Extensive Form Example



- The members of the equivalence classes are sometimes called information sets

Players cannot distinguish which history they are in within an information set

Recap: Behavioural vs. Mixed Strategies

Definition: A mixed strategy $s_i \in \Delta(A^{I_i})$ pure strategies.

Definition:

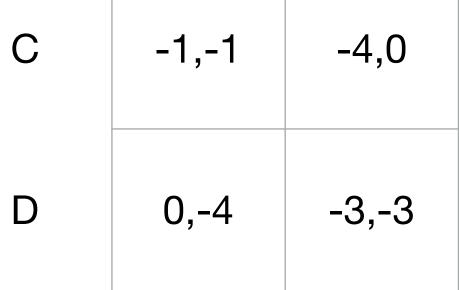
A behavioural strategy $b_i \in [\Delta(A)]^{I_i}$ is a probability distribution over an agent's actions at an **information set**, which is **sampled independently** each time the agent arrives at the information set.

Kuhn's Theorem:

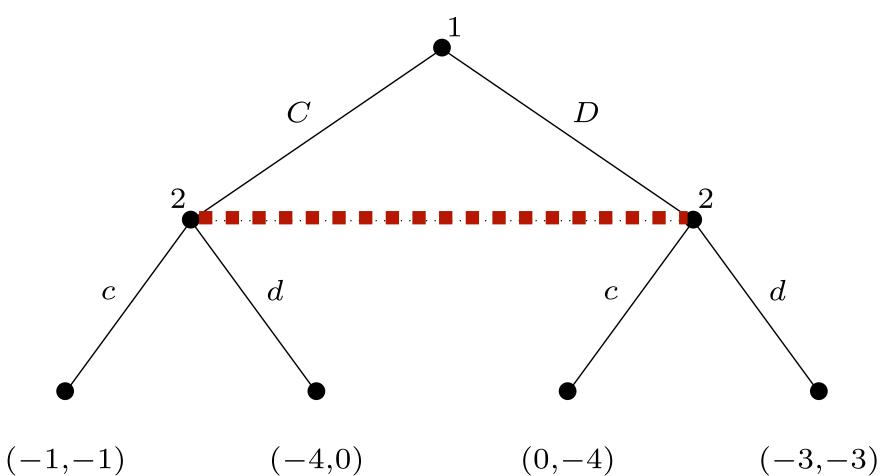
A mixed strategy $s_i \in \Delta(A^{I_i})$ is any distribution over an agent's

These are **equivalent** in games of **perfect recall**.

Recap: Normal to Extensive Form d С CD



• information extensive form game



Unlike perfect information games, we can go in the opposite direction and represent any normal form game as an imperfect

Repeated Game

- Some situations are well-modelled as the same agents playing a normalform game **multiple times**
 - The normal-form game is the **stage game**; the whole game of playing the stage game repeatedly is a **repeated game**
 - The stage game can be repeated a finite or an infinite number of times
- Questions to consider:
 - What do agents **observe**? 1.
 - 2. What do agents **remember**?
 - 3. What is the agents' **utility** for the whole repeated game?

Finitely Repeated Game

Suppose that *n* players play a other $k \in \mathbb{N}$ times.

Questions:

- 1. Do they observe the other players' actions? If so, when?
- 2. Do they remember what happened in the previous games?
- 3. What is the **utility** for the whole game?
- 4. What are the **pure strategies**?

Suppose that *n* players play a normal form game against each

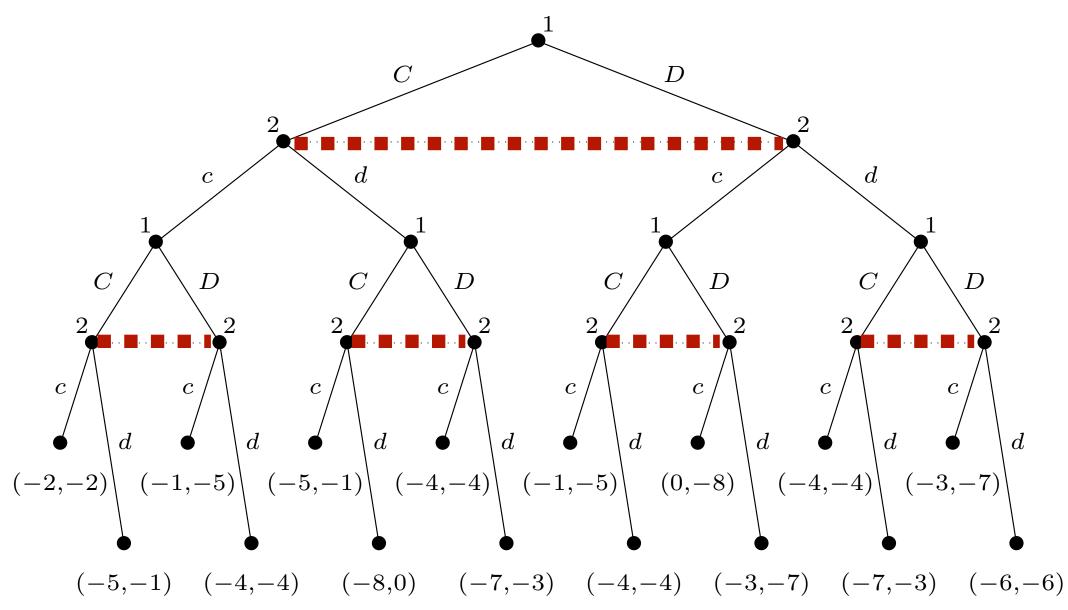
Representing Finitely Repeated Games

- Recall that we can represent normal form games as imperfect information extensive form games
- We can do the same for **repeated games**:

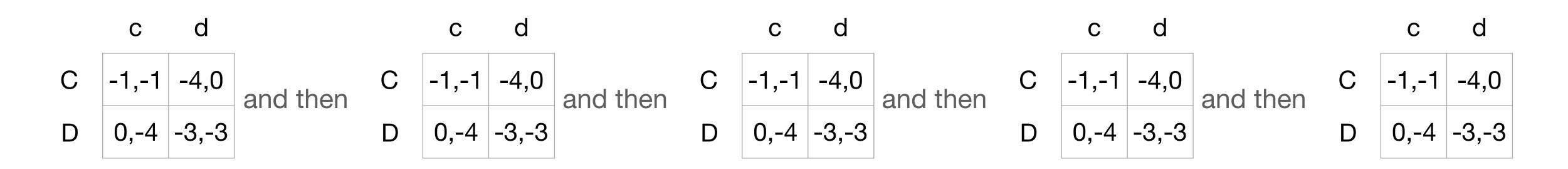
	С	d
С	-1,-1	-4,0
D	0,-4	-3,-3

and then

	С	a
С	-1,-1	-4,0
D	0,-4	-3,-3



Fun (Repeated) Game

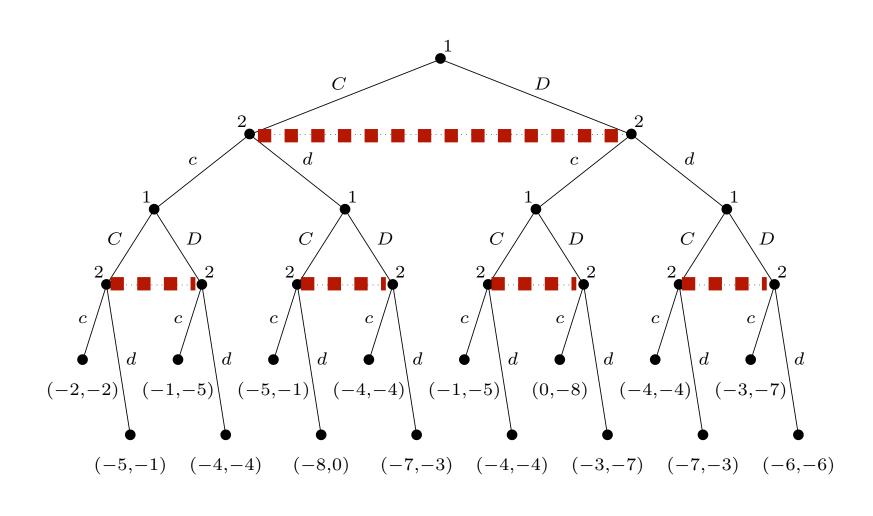


- Play the Prisoner's Dilem same person
- Play at least two people

• Play the Prisoner's Dilemma five times in a row against the

Properties of Finitely Repeated Games

- Playing an equilibrium of the stage game at every \bullet stage is an equilibrium of the repeated game
 - Instance of a **stationary** strategy \bullet
- In general, pure strategies can depend on the lacksquareprevious history
- **Question:** When the normal form game has a lacksquaredominant strategy, what can we say about the equilibrium of the finitely repeated game?



Infinitely Repeated Game

Suppose that *n* players play a r **infinitely many** times.

Questions:

- 1. Do they **remember** what happened in the previous games?
- 2. What is the **utility** for the whole game?
- 3. What are the **pure strategies**?
- 4. Can we write these games in the **imperfect information extensive form**?

Suppose that *n* players play a normal form game against each other

Payoffs in Infinitely Repeated Games

- We cannot just take the **sum of payoffs** in an infinitely repeated game, because there are **infinitely many of them**
- We can't just put the overall utility on the terminal nodes, because there aren't any
- Two possible approaches:
 - 1. Average reward: Take the limit of the average reward to be the overall reward of the game
 - 2. **Discounted reward:** Apply a **discount factor** to future rewards to guarantee that they will converge

Average Reward

Definition: average reward of *i* is

• Problem: May not **converge** (**why**?)

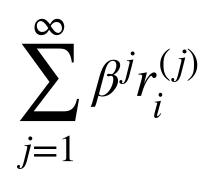
- Given an infinite sequence of payoffs $r_i^{(1)}, r_i^{(2)}, \dots$ for player *i*, the
 - $\lim_{k \to \infty} \sum_{j=1}^{k} \frac{r_i^{(j)}}{k}.$

Discounted Reward

Definition:

Given an infinite sequence of payoffs $r_i^{(1)}, r_i^{(2)}, \dots$ for player *i*, and a discount factor $0 \le \beta \le 1$, the **future discounted reward** of *i* is

- Interpretations:
 - earlier than rewards they have to wait for
 - will stop with probability $1-\beta$



1. Agent is **impatient**: cares more about rewards that they will receive

2. Agent cares equally about all rewards, but at any given round the game

• The two interpretations have **identical implications** for analyzing the game

Strategy Spaces in Infinitely Repeated Games

Question: What is a **pure strategy** in an infinitely repeated game?

Definition:

For a stage game G=(N,A,u), $A^* = \{\emptyset\} \cup A$

be the set of **histories** of the Then a **pure strategy** of the i agent *i* is a mapping

from histories to player *i*'s actions.

let

$$A^1 \cup A^2 \cup \dots = \bigcup_{t=0}^{\infty} A^t$$

infinitely repeated game.
nfinitely repeated game for an

 $s_i: A^* \to A_i$

Equilibria in Infinitely Repeated Games

- Can we characterize the set of equilibria for an infinitely repeated game?
 - Can't appeal to Nash's Theorem, because it only applies to finite games
 - Can't build the induced normal form, there are infinitely many pure strategies
 - There could even be infinitely many pure strategy Nash equilibria!
- We can characterize the set of payoff profiles that are achievable in an equilibrium, instead of characterizing the equilibria themselves

Enforceable

Definition:

 $s_i \in S_i$ $s_i \in S_i$

 $i \in N$.

• A payoff vector is enforceable (on *i*) if the other agents working together can **ensure** that *i*'s utility is no greater than r_i .

- Let $v_i = \min \max u_i(s_i, s_{-i})$ be i's minmax value in G = (N, A, u).
- Then a payoff profile $r=(r_1,\ldots,r_n)$ is **enforceable** if $r_i \ge v_i$ for all

Definition:

negative values α_a such that for all *i*,

 $r_i =$

with $\sum_{a} \alpha_{a} = 1$.

• A payoff profile is feasible if it is a (rational) convex combination of the outcomes in G.

Feasible

A payoff profile $r = (r_1, ..., r_n)$ is **feasible** if there exist rational, non-

$$\sum_{a \in A} \alpha_a u_i(a),$$

Folk Theorem

Theorem:

Consider any n-player normal f $r=(r_1,...,r_n)$.

- 1. If r is the payoff profile for any Nash equilibrium of the infinitely repeated G with average rewards, then r is enforceable.
- 2. If r is both feasible and enforceable, then r is the payoff profile for some Nash equilibrium of the infinitely repeated *G* with average rewards.
- Whole family of similar proofs for discounted rewards case, subgame perfect equilibria, etc.

Consider any n-player normal form game G and payoff profile

Folk Theorem Proof Sketch: Nash ⇒ Enforceable

- Suppose for contradiction that r is **not** enforceable
- Consider the strategy $s'_i(h) = BR_i(s_{-i}(h))$, where s_{-i} is the equilibrium strategy of the other players
- Player *i* receives at least $v_i > r_i$ in every stage game by playing strategy s'; (**why**?)
- hence s is not an equilibrium

• So strategy s'i is a **utility-increasing deviation** from s, and

Folk Theorem Proof Sketch: Enforceable & Feasible = Nash

- Suppose that *r* is both feasible and enforceable
- with frequency the α_a (since the α_a s are all rational)
- **strategy against** *i* (this is called a *Grim Trigger* strategy)
 - deviation (**why**?)
 - Thus there is no utility-increasing deviation for *i*

• We can construct an equilibrium that visits each action profile a

• At every history where a player *i* has not played their part of the cycle, all of the other players switch to playing the minmax

• That makes *i*'s overall utility for the game $v_i <= r_i$ for any

Summary

- A **repeated game** is one in which agents play the same normal form game (the **stage game**) multiple times
- Finitely repeated: Can represent as an imperfect information extensive form game
- Infinitely repeated: Life gets more complicated
 - Payoff to the game: either average or discounted reward
 - Pure strategies map from entire previous history to action
- Folk theorem characterizes what payoff profiles can arise in any equilibrium
 - All profiles that are both **enforceable** and **feasible**