Perfect-Information Extensive Form Games

CMPUT 654: Modelling Human Strategic Behaviour

S\&LB \$5.1

Lecture Outline

1. Recap
2. Extensive Form Games
3. Subgame Perfect Equilibrium
4. Backward Induction

Recap

- ε-Nash equilibria: stable when agents have no deviation that gains them more than ε
- Correlated equilibria: stable when agents have signals from a possibly-correlated randomizing device
- Linear programs are a flexible encoding that can always be solved in polytime
- Finding a Nash equilibrium is computationally hard in general
- Special cases are efficiently computable:
- Nash equilibria in zero-sum games
- Maxmin strategies (and values) in two-player games
- Correlated equilibrium

Extensive Form Games

- Normal form games don't have any notion of sequence: all actions happen simultaneously
- The extensive form is a game representation that explicitly includes temporal structure (i.e., a game tree)

Perfect Information

There are two kinds of extensive form game:

1. Perfect information: Every agent sees all actions of the other players (including Nature)

- e.g.: Chess, checkers, Pandemic
- This lecture!

2. Imperfect information: Some actions are hidden

- Players may not know exactly where they are in the tree
- e.g.: Poker, rummy, Scrabble

Perfect Information Extensive Form Game

Definition:

A finite perfect-information game in extensive form is a tuple $G=(N, A, H, Z, \chi, \rho, \sigma, u)$, where

- N is a set of n players,
- A is a single set of actions,
- H is a set of nonterminal choice nodes,
- Z is a set of terminal nodes (disjoint from H),
- $\chi: H \rightarrow 2^{A}$ is the action function,

$(0,0)$
- $\sigma: H \times A \rightarrow H \cup Z$ is the successor function,
- $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is a utility function for each player $u_{i}: Z \rightarrow \mathbb{R}$.

Fun Game: The Sharing Game

- Two siblings must decide how to share two $\$ 100$ coins
- Sibling 1 suggests a division, then sibling 2 accepts or rejects
- If rejected, nobody gets any coins.
- Play against 3 other people, once per person only

Pure Strategies

Question: What are the pure strategies in an extensive form game?

Definition:

Let $G=(N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfect information game in extensive form. Then the pure strategies of player i consist of the cross product of actions available to player i at each of their choice nodes, i.e.,

$$
\prod_{h \in H \mid \rho(h)=i} \chi(h)
$$

- A pure strategy associates an action with each choice node, even those that will never be reached

Pure Strategies Example

Question: What are the pure strategies for player 2?

- \{(C,E), (C,F), (D,E), (D,F)\}

Question: What are the pure strategies for player 1?

- $\{(A, G),(A, H),(B, G),(G, H)\}$
- Note that these associate an action with the
 second choice node even when it can never be reached

Induced Normal Form

Question:

Which representation
is more compact?

C,E	C,F	D,E	D,F	
A,G	3,8	3,8	8,3	8,3
A,H	3,8	3,8	8,3	8,3
B,G	5,5	2,10	5,5	2,10
B,H	5,5	1,0	5,5	1,0

- Any pair of pure strategies uniquely identifies a terminal node, which identifies a utility for each agent
- We have now defined a set of agents, pure strategies, and utility functions
- Any extensive form game defines a corresponding induced normal form game

Reusing Old Definitions

- We can plug our new definition of pure strategy into our existing definitions for:
- Mixed strategy
- Best response
- Nash equilibrium (both pure and mixed strategy)

Question:

What is the definition of a mixed strategy in an extensive form game?

Pure Strategy Nash Equilibria

Theorem: [Zermelo 1913]

Every finite perfect-information game in extensive form has at least one pure strategy Nash equilibrium.

- Starting from the bottom of the tree, no agent needs to randomize, because they already know the best response
- There might be multiple pure strategy Nash equilibria in cases where an agent has multiple best responses at a single choice node

Pure Strategy Nash Equilibria

	C,E	C,F	D,E	D,F
A,G	3,8	3,8	8,3	8,3
A,H	3,8	3,8	8,3	8,3
B,G	5,5	2,10	5,5	2,10
B,H	5,5	1,0	5,5	1,0

- Question: What are the pure-strategy Nash equilibria of this game?
- Question: Do any of them seem implausible?

Subgame Perfection, informally

- Some equilibria seem less plausible
- (BH,CE): F has payoff 0 for player 2, because player 1 plays H, so their best response is to play E
- But why would player 1 play H if they got to that choice node?
- The equilibrium relies on a threat from player 1 that is not credible

- Subgame perfect equilibria are those that don't rely on non-credible threats

Subgames

Definition:

The subgame of G rooted at h is the restriction of G to the descendants of h.

Definition:

The subgames of G are the subgames of G rooted at h for every choice node $h \in H$.

Examples:

Subgame Perfect Equilibrium

Definition:

An strategy profile s is a subgame perfect equilibrium of G iff, for every subgame G^{\prime} of G, the restriction of s to G^{\prime} is a Nash equilibrium of G^{\prime}.

| | C,E | C,F | D,E | D,F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A,G | 3,8 | 3,8 | 8,3 | 8,3 |
| A,H | 3,8 | 3,8 | 8,3 | 8,3 |
| B,G | 5,5 | 2,10 | 5,5 | 2,10 |
| B,H | 5,5 | 1,0 | 5,5 | 1,0 |

Backward Induction

- Backward induction is a straightforward algorithm that is guaranteed to compute a subgame perfect equilibrium
- Idea: Replace subgames lower in the tree with their equilibrium values

```
BACKWARDINDUCTION(h):
    if \(h\) is terminal:
        return \(u(h)\)
    \(i:=\rho(h)\)
    \(U:=-\infty\)
    for each \(h^{\prime}\) in \(\chi(h)\) :
        \(V=\) BACKWARDINDUCTION( \(h^{\prime}\) )
        if \(V_{i}>U_{i}\) :
        \(U_{i}:=V_{i}\)
return \(U\)
```


Fun Game: Centipede

Question:

What is the unique subgame perfect equilibrium for Centipede?

- At each stage, one of the players can go Across or Down
- If they go Down, the game ends.
- Play against four people! Try to play each role at least once.

Backward Induction Criticism

- The unique subgame perfect equilibrium is for each player to go Down at the first opportunity
- Empirically, this is not how real people tend to play!
- Theoretically, what should you do if you arrive at an off-path node?
- How do you update your beliefs to account for this probability 0 event?
- If player 1 knows that you will update your beliefs in a way that causes you not to go down, then going down is no longer their only rational choice...

Summary

- Extensive form games allow us to represent sequential action
- Perfect information: when we see everything that happens
- Pure strategies for extensive form games map choice nodes to actions
- Induced normal form is the normal form game with these pure strategies
- Notions of mixed strategy, best response, etc. translate directly
- Subgame perfect equilibria are those which do not rely on non-credible threats
- Can always find a subgame perfect equilibrium using backward induction
- But backward induction is theoretically and practically complicated

