Perfect-Information Extensive Form Games

CMPUT 654: Modelling Human Strategic Behaviour

S&LB §5.1

Lecture Outline

- Recap 1.
- 2. Extensive Form Games
- 3. Subgame Perfect Equilibrium
- 4. Backward Induction

Recap

- ϵ -Nash equilibria: stable when agents have no deviation that gains them more than ϵ
- Correlated equilibria: stable when agents have signals from a possibly-correlated randomizing device
- Linear programs are a flexible encoding that can always be solved in polytime
- Finding a Nash equilibrium is **computationally hard** in general
- **Special cases** are efficiently computable:
 - Nash equilibria in zero-sum games
 - Maxmin strategies (and values) in two-player games
 - Correlated equilibrium

- Normal form games don't have any notion of sequence: all actions happen **simultaneously**
- The extensive form is a game representation that explicitly includes temporal structure (i.e., a game tree)

Extensive Form Games

Perfect Information

There are two kinds of extensive form game:

- Perfect information: Every agent sees all actions of the other players (including Nature)
 - e.g.: Chess, checkers, Pandemic
 - This lecture! \bullet
- Imperfect information: Some actions are hidden 2.
 - Players may not know exactly where they are in the tree \bullet
 - e.g.: Poker, rummy, Scrabble

Perfect Information Extensive Form Game

Definition:

A finite perfect-information game in extensive form is a tuple $G = (N, A, H, Z, \chi, \rho, \sigma, u)$, where

- *N* is a set of *n* **players**,
- A is a single set of **actions**,
- *H* is a set of nonterminal **choice nodes**,
- Z is a set of **terminal nodes** (disjoint from H),
- $\chi: H \to 2^A$ is the action function,
- $\rho: H \to N$ is the player function,
- $\sigma: H \times A \to H \cup Z$ is the successor function,
- $u = (u_1, u_2, ..., u_n)$ is a **utility function** for each player $u_i : Z \to \mathbb{R}$.

- Two siblings must decide how to share two \$100 coins \bullet
- - If rejected, nobody gets any coins.
- Play against 3 other people, once per person only

Sibling 1 suggests a division, then sibling 2 accepts or rejects

Pure Strategies

game?

Definition:

Let $G = (N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfect information game in choice nodes, i.e.,

h∈E

even those that will never be reached

Question: What are the **pure strategies** in an extensive form

extensive form. Then the pure strategies of player i consist of the cross product of actions available to player *i* at each of their

$$\prod_{H|\rho(h)=i} \chi(h)$$

A pure strategy associates an action with each choice node,

Pure Strategies Example

Question: What are the **pure strategies** for player 2?

• $\{(C,E), (C,F), (D,E), (D,F)\}$

Question: What are the **pure strategies** for player 1?

- $\{(A,G), (A,H), (B,G), (G,H)\}$
- Note that these associate an action with the second choice node even when it can never be reached

(2,10)

(1,0)

Induced Normal Form

Question:

Which representation is more **compact**?

- We have now defined a set of **agents**, **pure strategies**, and **utility functions**
- Any extensive form game defines a corresponding induced normal form game

		C,E	C,F	D,E	D,F
	A,G	3,8	3,8	8,3	8,3
	A,H	3,8	3,8	8,3	8,3
H	B,G	5,5	2,10	5,5	2,10
(1,0)	B,H	5,5	1,0	5,5	1,0

• Any pair of pure strategies uniquely identifies a **terminal node**, which identifies a **utility** for each agent

Reusing Old Definitions

- existing definitions for:
 - Mixed strategy \bullet
 - Best response

• We can plug our new definition of **pure strategy** into our

Nash equilibrium (both pure and mixed strategy)

Question:

What is the definition of a mixed strategy in an extensive form game?

Pure Strategy Nash Equilibria

Theorem: [Zermelo 1913] Every finite perfect-information game in extensive form has at least one pure strategy Nash equilibrium.

- Starting from the bottom of the tree, no agent needs to
- single choice node

randomize, because they already know the best response

• There might be multiple pure strategy Nash equilibria in cases where an agent has multiple best responses at a

Pure Strategy Nash Equilibria

- Question: What are the pure-strategy Nash equilibria of this game?
- **Question:** Do any of them seem implausible?

C,E C,F

D,E D,F

	A,G	3,8	3,8	8,3	8,3
	A,H	3,8	3,8	8,3	8,3
H	B,G	5,5	2,10	5,5	2,10
(1,0)	B,H	5,5	1,0	5,5	1,0

Subgame Perfection, informally

- Some equilibria seem less plausible
- (*BH,CE*): F has payoff 0 for player 2, because player 1 plays *H*, so their best response is to play *E*
 - But why would player 1 play H if they got to that choice node?
 - The equilibrium relies on a threat from player 1 that is not credible
- Subgame perfect equilibria are those that don't rely on non-credible threats

Subgames

Definition: The subgame of G rooted at h is the restriction of G to the descendants of h.

Definition:

The subgames of G are the subgames of G rooted at h for every choice node $h \in H$.

Examples:

Subgame Perfect Equilibrium

Definition:

An strategy profile s is a **subgame perfect equilibrium** of G iff, for every subgame G' of G, the restriction of s to G' is a Nash equilibrium of G'.

	C,E	C,F	D,E	D,F
A,G	3,8	3,8	8,3	8,3
A,H	3,8	3,8	8,3	8,3
B,G	5,5	2,10	5,5	2,10
B,H	5,5	1,0	5,5	1,0

(1,0)

Backward Induction

- to compute a subgame perfect equilibrium
- \bullet

BACKWARDINDUCTION(*h*): if *h* is terminal: return u(h) $i := \rho(h)$ *U* := -∞ for each h' in $\chi(h)$: if $V_i > U_i$: $U_i := V_i$ return U

• **Backward induction** is a straightforward algorithm that is guaranteed

Idea: Replace subgames lower in the tree with their equilibrium values

V = BACKWARDINDUCTION(h')

- If they go Down, the game ends.

Question:

What is the unique subgame perfect equilibrium for Centipede?

• At each stage, one of the players can go Across or Down

Play against four people! Try to play each role at least once.

Backward Induction Criticism

- The unique subgame perfect equilibrium is for each player to go Down at the first opportunity
- Empirically, this is not how real people tend to play!
- Theoretically, what should you do if you arrive at an off-path node?
 - How do you update your beliefs to account for this probability 0 event?
 - If player 1 knows that you will update your beliefs in a way that causes you not to go down, then going down is no longer their only rational choice...

Summary

- Extensive form games allow us to represent sequential action
 - Perfect information: when we see everything that happens
- Pure strategies for extensive form games map choice nodes to actions
 - Induced normal form is the normal form game with these pure strategies
 - Notions of mixed strategy, best response, etc. translate directly
- Subgame perfect equilibria are those which do not rely on non-credible threats
 - Can always find a subgame perfect equilibrium using backward induction
 - But backward induction is theoretically and practically complicated