Utility Theory

CMPUT 654: Modelling Human Strategic Behaviour

S\&LB §3.1

Recap: Course Essentials

Course webpage: jrwright.info/bgtcourse/

- This is the main source for information about the class
- Slides, readings, assignments, deadlines

Contacting me:

- Discussion board: piazza.com/ualberta.ca/winter2019/cmput654/ for public questions about assignments, lecture material, etc.
- Email: james.wright@ualberta.ca for private questions (health problems, inquiries about grades)
- Office hours: After every lecture, or by appointment

Utility, informally

- A utility function is a real-valued function that indicates how much agents like an outcome.

Rational agents act to maximize their expected utility.

- Nontrivial claim:

1. Why should we believe that an agent's preferences can be adequately represented by a single number?
2. Why should agents maximize expected value rather than some other criterion?

- Von-Neumann and Morgenstern's Theorem shows why (and when!) these are true.
- It is also a good example of some common elements in game theory (and economics):
- Behaving "as-fif"
- Axiomatic characterization

Outline

1. Informal statement
2. Theorem statement (von Neumann \& Morgenstern)
3. Proof sketch
4. Fun game!
5. Representation theorem (Savage)

Formal Setting

Definition

Let O be a set of possible outcomes. A lottery is a probability distribution over outcomes. Write $\left[p_{1}: O_{1}, p_{2}: \mathrm{O}_{2}, \ldots, p_{k}: O_{k}\right]$ for the lottery that assigns probability p_{j} to outcome oj.

Definition

For a specific preference relation \geq, write:

1. $O_{1} \geq O_{2}$ if the agent weakly prefers O_{1} to O_{2},
2. $\mathrm{O}_{1}>\mathrm{O}_{2}$ if the agent strictly prefers O_{1} to O_{2},
3. $O_{1} \sim O_{2}$ if the agent is indifferent between O_{1} and O_{2}.

Formal Setting

Definition

A utility function is a function $u: O \rightarrow \mathbb{R}$. A utility function represents a preference relation \geq iff:

1. $o_{1} \geq o_{2} \Longleftrightarrow u\left(o_{1}\right) \geq u\left(o_{2}\right)$ and
2. $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$.

Representation Theorem

Theorem: [von Neumann \& Morgenstern, 1944]
Suppose that a preference relation \geq satisfies the axioms Completeness, Transitivity, Monotonicity, Substitutability, Decomposability, and Continuity. Then there exists a function $u: O \rightarrow \mathbb{R}$ such that

1. $o_{1} \geq o_{2} \Longleftrightarrow u\left(o_{1}\right) \geq u\left(o_{2}\right)$ and
2. $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$.

That is, there exists a utility function that represents \geq.

Completeness and Transitivity

Definition (Completeness):

$$
\forall o_{1}, o_{2}:\left(o_{1}>o_{2}\right) \vee\left(o_{1}<o_{2}\right) \vee\left(o_{1} \sim o_{2}\right)
$$

Definition (Transitivity):

$$
\forall o_{1}, o_{2}:\left(o_{1} \geq o_{2}\right) \wedge\left(o_{2} \geq o_{3}\right) \Longrightarrow o_{1} \geq o_{3}
$$

Transitivity Justification: Money Pump

- Suppose that $\left(\mathrm{O}_{1}>\mathrm{O}_{2}\right)$ and $\left(\mathrm{O}_{2}>\mathrm{O}_{3}\right)$ and $\left(\mathrm{O}_{3}>\mathrm{O}_{1}\right)$.
- Starting from O_{3}, you are willing to pay $1 \subset$ (say) to switch to O_{2}
- But from O_{2}, you should be willing to pay $1 \subset$ to switch to O_{1}
- But from 0_{1}, you should be willing to pay $1 \subset$ to switch back to оз again...

Monotonicity

Definition (Monotonicity):

If $O_{1}>O_{2}$ and $p>q$, then

$$
\left[p: o_{1},(1-p): o_{2}\right]>\left[q: o_{1},(1-q): o_{2}\right]
$$

You should prefer a 90\% chance of getting $\$ 1000$ to a 50% chance of getting $\$ 1000$.

Substitutability

Definition (Substitutability):

If $O_{1} \sim O_{2}$, then for all sequences o_{3}, \ldots, o_{k} and p, p_{3}, \ldots, p_{k} with

$$
\begin{aligned}
& p+\sum_{i=3}^{k} p_{i}=1, \\
& \left.\left.p: o_{1}, p_{3}: o_{3}, \ldots, p_{k}: o_{k}\right] \sim p: o_{2}, p_{3}: o_{3}, \ldots, p_{k}: o_{k}\right]
\end{aligned}
$$

If I like apples and bananas equally, then I should be indifferent between a 30% chance of getting an apple and a 30\% chance of getting a banana.

Decomposability

Definition (Decomposability):

Let $P_{\ell}\left(o_{i}\right)$ denote the probability that lottery ℓ selects outcome o_{i}.
If $P_{\ell_{1}}\left(o_{i}\right)=P_{\ell_{2}}\left(o_{i}\right) \forall o_{i} \in O$, then $\ell_{1} \sim \ell_{2}$.
Example:
Let $\ell_{1}=\left[0.5:\left[0.5: 0_{1}, 0.5: 0_{2}\right], 0.5: 0_{3}\right]$
Let $\ell_{2}=\left[0.25: 0_{1}, 0.25: 0_{2}, 0.5: 0_{3}\right]$

Then $\ell_{1} \sim \ell_{2}$, because

$$
\begin{aligned}
& P_{\ell_{1}}\left(o_{1}\right)=P_{\ell_{2}}\left(o_{1}\right)=0.25 \\
& P_{\ell_{1}}\left(o_{2}\right)=P_{\ell_{2}}\left(o_{2}\right)=0.25 \\
& P_{\ell_{1}}\left(o_{3}\right)=P_{\ell_{2}}\left(o_{3}\right)=0.5
\end{aligned}
$$

Continuity

Definition (Continuity):

If $o_{1}>o_{2}>o_{3}$, then $\exists p \in[0,1]$ such that
$o_{2} \sim\left[p: o_{1},(1-p): o_{3}\right]$.

Proof Sketch:

Construct the utility function

1. For \geq satisfying Completeness, Transitivity, Monotonicity,

Decomposability, for every $\mathrm{O}_{1}>\mathrm{O}_{2}>\mathrm{O}_{3}, \exists p$ such that:

$$
\begin{aligned}
& \text { 1. } o_{2}>\left[q: o_{1},(1-q): o_{3}\right] \forall q<p \text {, and } \\
& \text { 2. } o_{2}<\left[q: o_{1},(1-q): o_{3}\right] \forall q>p .
\end{aligned}
$$

2. For \geq additionally satisfying Continuity,
$\exists p: o_{2} \sim\left[p: o_{1},(1-p): o_{3}\right]$.
3. Choose maximal $o^{+} \in O$ and minimal $o^{-} \in O$.
4. Construct $u(0)=p$ such that $o \sim\left[p: 0^{+},(1-p): o-\right]$.

Proof sketch:

 Check the properties

 Check the properties}

$$
\text { 1. } o_{1} \geq o_{2} \Longleftrightarrow u\left(o_{1}\right) \geq u\left(o_{2}\right)
$$

$$
u(o)=p \text { such that } o \sim\left[p: o^{+},(1-p): o^{-}\right]
$$

Proof sketch:
 Check the properties

2. $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$
(i) Let $u^{*}=u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)$
(ii) Replace o_{i} with $\ell_{i}=\left[u\left(o_{i}\right): o^{+},\left(1-u\left(o_{i}\right)\right): o^{-}\right]$, giving

$$
u^{*}=u\left(\left[p_{1}:\left[u\left(o_{1}\right): o^{+},\left(1-u\left(o_{1}\right)\right): o^{-}\right], \ldots,\left[p_{k}:\left[u\left(o_{k}\right): o^{+},\left(1-u\left(o_{k}\right)\right): o^{-}\right]\right]\right.\right.
$$

(iii) Question: What is the probability of getting 0^{+}?

Answer: $\Sigma_{i=1}^{k} p_{i}: u\left(o_{i}\right)$
(iv) So $u^{*}=u\left(\left[\left(\Sigma_{i=1}^{k} p_{i}: u\left(o_{i}\right)\right): o^{+},\left(1-\Sigma_{i=1}^{k} p_{i}: u\left(o_{i}\right)\right): o^{-}\right]\right)$.
(v) By definition of $u, u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$.

Caveats \& Details

- Utility functions are not uniquely defined
- Invariant to affine transformations (i.e., $m>0$):

$$
\begin{aligned}
& \mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)] \Longleftrightarrow X \geq Y \\
\Longleftrightarrow & \mathbb{E}[m u(X)+b] \geq \mathbb{E}[m u(Y)+b] \Longleftrightarrow X \geq Y
\end{aligned}
$$

- In particular, we're not stuck with a range of $[0,1]$

Caveats \& Details

- The proof depended on minimal and maximal elements of O, but that is not critical
- Construction for unbounded outcomes/preferences:

1. Construct utility for some bounded range of outcomes $u:\left\{O_{s}, \ldots, O_{e}\right\} \rightarrow[0,1]$.
2. For outcomes outside that range, choose an overlapping range $\left\{o_{s}, \ldots, o_{e^{\prime}}\right\}$ with $s^{\prime}<s<e^{\prime}<e$
3. Construct $u^{\prime}:\left\{o_{s}, \ldots, o_{e}{ }^{\prime}\right\} \rightarrow[0,1]$ utility
4. Find $m>0, b$ such that $m u^{\prime}\left(o_{s}\right)+b=u\left(0_{s}\right)$ and $m u^{\prime}\left(O_{e^{\prime}}\right)=u\left(O_{e^{\prime}}\right)$
5. Let $u(0)=m u^{\prime}(0)+b$ for $o \in\left\{O_{s^{\prime}}, \ldots, o_{e}\right\}$

Fun game: Buying lottery tickets

Write down the following numbers:

1. How much would you pay for the lottery [0.3:\$5, $0.3: \$ 7,0.4: \$ 9]$?
2. How much would you pay for the lottery [$p: \$ 5, q: \$ 7,(1-p-q): \$ 9]$?
3. How much would you pay for the lottery
$[p: \$ 5, q: \$ 7,(1-p-q): \$ 9]$ if you knew the last seven draws had been $5,5,7,5,9,9,5$?

von Neumann \& Morgenstern

- The first step of the fun game was a good match to the utility theory we just learned.
- If two people have different prices for step 1, what does that say about their utility functions for money?
- The second and third steps, not so much!
- If two people have different prices for step 2, what does that say about their utility functions?
- What if two people have the same prices for step 2 but different prices for step 3?

Another Formal Setting

- States: Set S of elements s, s^{\prime}, \ldots with subsets A, B, C, \ldots
- Consequences: Set F of elements f, g, h, \ldots
- Acts: Arbitrary functions $\boldsymbol{f}: S \rightarrow F$
- Preference relation \geq between acts
- (f $\succeq \mathbf{g}$ given $B) \Longleftrightarrow$
$\mathbf{f}^{\prime} \geq \mathbf{g}^{\prime}$ for every $\mathbf{f}^{\prime}, \mathbf{g}^{\prime}$ that agree with \mathbf{f}, \mathbf{g} respectively on B and each other on \bar{B}

Another

Representation Theorem

Theorem: [Savage, 1954]
Suppose that a preference relation \geq satisfies postulates P1-P6. Then there exists a utility function U and a probability measure P such that

$$
\mathbf{f} \geq \mathbf{g} \Longleftrightarrow \sum_{i} P\left[B_{i}\right] U\left[f_{i}\right] \geq \sum_{i} P\left[B_{i}\right] U\left[g_{i}\right]
$$

Postulates

P1 \geq is a simple order.
P2 $\forall \mathbf{f}, \mathbf{g}, B:(\mathbf{f} \geq \mathbf{g}$ given $B) \vee(\mathbf{g} \geq \mathbf{f}$ given $B)$
P3 $\quad\left(\mathbf{f}(s)=g \wedge \mathbf{f}^{\prime}(s)=g^{\prime} \forall s \in B\right) \Longrightarrow\left(\mathbf{f} \geq \mathbf{f}^{\prime}\right.$ given $\left.B \Longleftrightarrow g \geq g^{\prime}\right)$
P4 For every $A, B,(P[A] \leq P[B]) \vee(P[B] \leq P[A])$.
P5 It is false that for every $f, f^{\prime}, f \geq f^{\prime}$.
P6 (Sure-thing principle)

Summary

- Using very simple axioms about preferences over lotteries, utility theory proves that rational agents ought to act as if they were maximizing the expected value of a real-valued function.
- Rational agents are those whose behaviour satisfies a certain set of axioms
- If you don't buy the axioms, then you shouldn't buy that this theorem is about rational behaviour
- Can extend beyond this to "subjective" probabilities, using axioms about preferences over uncertain "acts" that do not describe how agents manipulate probabilities.

