CMPUT 654: Modelling Human Strategic Behaviour

Utility Theory

S&LB §3.1

Recap: Course Essentials

Course webpage: <u>irwright.info/bgtcourse/</u>

- This is the main source for information about the class
- Slides, readings, assignments, deadlines •

Contacting me:

- Discussion board: piazza.com/ualberta.ca/winter2019/cmput654/ for **public** questions about assignments, lecture material, etc.
- Email: james.wright@ualberta.ca \bullet for **private** questions (health problems, inquiries about grades)
- Office hours: After every lecture, or by appointment

Utility, informally

• A utility function is a real-valued function that indicates how much agents like an outcome.

- **Nontrivial** claim:
 - 1. Why should we believe that an agent's preferences can be adequately represented by a single number?
 - 2. Why should agents maximize **expected value** rather than some other criterion?
- Von-Neumann and Morgenstern's Theorem shows why (and when!) these are true.
- It is also a good example of some common elements in game theory (and economics):
 - Behaving "as-if"
 - Axiomatic characterization

Rational agents act to maximize their expected utility.

Outline

- Informal statement 1.
- 2. Theorem statement (von Neumann & Morgenstern)
- 3. Proof sketch
- 4. Fun game!
- 5. Representation theorem (Savage)

Formal Setting

Definition

Let O be a set of possible **outcomes**. A **lottery** is a probability distribution over outcomes. Write $[p_1:o_1, p_2:o_2, \dots, p_k:o_k]$ for the lottery that assigns probability p_i to outcome o_i .

Definition

For a specific **preference relation** \geq , write:

- **1.** $O_1 \ge O_2$ if the agent weakly prefers O_1 to O_2 ,
- **2.** $O_1 > O_2$ if the agent strictly prefers O_1 to O_2 ,
- **3.** $o_1 \sim o_2$ if the agent is **indifferent** between o_1 and o_2 .

Formal Setting

Definition **represents** a preference relation \geq iff:

1.
$$o_1 \ge o_2 \iff u(o_1) \ge u(o_2)$$

2. $u([p_1 : o_1, ..., p_k : o_k]) = \sum_{i=1}^k$

- A utility function is a function $u: O \to \mathbb{R}$. A utility function
 - and
 - $p_i u(o_i)$.

Representation Theorem

Theorem: [von Neumann & Morgenstern, 1944] Suppose that a preference relation \geq satisfies the axioms **Decomposability**, and **Continuity**. Then there exists a function $u: O \to \mathbb{R}$ such that

1.
$$o_1 \ge o_2 \iff u(o_1) \ge u(o_2)$$

2.
$$u([p_1:o_1,...,p_k:o_k]) = \sum_{i=1}^k \sum_{k=1}^{k} \frac{1}{2} \sum_{k$$

That is, there exists a utility function that **represents** \geq .

- Completeness, Transitivity, Monotonicity, Substitutability,

- and
- $p_i u(o_i)$

Completeness and Transitivity

Definition (Completeness):

 $\forall o_1, o_2 : (o_1 \succ o_2) \lor (o_1 \prec o_2) \lor (o_1 \sim o_2)$

Definition (Transitivity):

 $\forall o_1, o_2 : (o_1 \succeq o_2) \land (o_2 \succeq o_3) \implies o_1 \succeq o_3$

Transitivity Justification: Money Pump

- Suppose that $(o_1 > o_2)$ and $(o_2 > o_3)$ and $(o_3 > o_1)$.
- Starting from o_3 , you are willing to pay 1¢ (say) to switch to o_2
- But from o_2 , you should be willing to pay 1¢ to switch to o_1
- But from o₁, you should be willing to pay 1¢ to switch back to o₃ again...

Monotonicity

Definition (Monotonicity): If $o_1 > o_2$ and p > q, then

 $[p:o_1,(1-p):o_2]\succ [q:o_1,(1-q):o_2]$

You should prefer a 90% chance of getting \$1000 to a 50% chance of getting \$1000.

Substitutability

Definition (Substitutability): If $o_1 \sim o_2$, then for all sequences o_3, \dots, o_k and p, p_3, \dots, p_k with $p + \sum_{i=1}^{k} p_i = 1,$ i=3 $[p:o_1, p_3:o_3, ..., p_k:o_k] \sim [p:o_2]$

If I like apples and bananas equally, then I should be indifferent between a 30% chance of getting an apple and a 30% chance of getting a banana.

$$\sim [p:o_2, p_3:o_3, ..., p_k:o_k]$$

Decomposability

Definition (Decomposability):

Let $P_{\ell}(o_i)$ denote the probability that lottery ℓ selects outcome o_i . If $P_{\ell_1}(o_i) = P_{\ell_2}(o_i) \ \forall o_i \in O$, then $\ell_1 \sim \ell_2$.

Example: Let $l_1 = [0.5 : [0.5 : o_1, 0.5 : o_2], 0.5 : o_3]$ Let $\ell_2 = [0.25 : o_1, 0.25 : o_2, 0.5 : o_3]$

Then $\ell_1 \sim \ell_2$, because

 $P_{\ell_1}(o_1) = P_{\ell_2}(o_1) = 0.25$ $P_{\ell_1}(o_2) = P_{\ell_2}(o_2) = 0.25$ $P_{\ell_1}(o_3) = P_{\ell_2}(o_3) = 0.5$

Continuity

Definition (Continuity):

If $o_1 > o_2 > o_3$, then $\exists p \in [0,1]$ such that $o_2 \sim [p:o_1, (1-p):o_3].$

Proof Sketch: Construct the utility function

1. For \geq satisfying Completeness, Transitivity, Monotonicity, Decomposability, for every $o_1 > o_2 > o_3$, $\exists p$ such that:

$$1.o_2 > [q:o_1, (1-q):o_3]$$

 $2 \cdot o_2 \prec [q : o_1, (1 - q) : o_3] \quad \forall q > p$

2. For \geq additionally satisfying Continuity,

 $\exists p: o_2 \sim [p:o_1, (1-p):o_3].$

Choose maximal $o^+ \in O$ and minimal $o^- \in O$. 3.

4. Construct u(o) = p such that $o \sim [p : o^+, (1-p) : o^-]$.

- $_{3}$] $\forall q < p$, and

Proof sketch: Check the properties

1. $o_1 \ge o_2 \iff u(o_1) \ge u(o_2)$

u(o) = p such that $o \sim [p : o^+, (1 - p) : o^-]$

Proof sketch: Check the properties

- 2. $u([p_1:o_1,...,p_k:o_k]) = \sum_{i=1}^k p_i u(o_i)$
 - (i) Let $u^* = u([p_1 : o_1, ..., p_k : o_k])$
 - (ii)
 - (iii)Answer: $\sum_{i=1}^{k} p_i : u(o_i)$

(iv) So
$$u^* = u\left(\left[\left(\Sigma_{i=1}^k p_i : u(o_i)\right) : o^+, \left(1 - \Sigma_{i=1}^k p_i : u(o_i)\right) : o^-\right]\right)$$
.

(v) By definition of $u, u([p_1 : o_1, ..., p_k : o_k]) = \sum_{i=1}^k p_i u(o_i)$.

Replace o_i with $\ell_i = [u(o_i) : o^+, (1 - u(o_i)) : o^-]$, giving $u^* = u([p_1 : [u(o_1) : o^+, (1 - u(o_1)) : o^-], ..., [p_k : [u(o_k) : o^+, (1 - u(o_k)) : o^-]])$

Question: What is the probability of getting o+?

Caveats & Details

- Utility functions are **not uniquely defined**
 - Invariant to affine transformations (i.e., m > 0): $\mathbb{E}[u(X)] \ge \mathbb{E}[u(Y)] \iff X \ge Y$
- $\iff \mathbb{E}[mu(X) + b] \ge \mathbb{E}[mu(Y) + b] \iff X \ge Y$
 - In particular, we're not stuck with a range of [0,1]

Caveats & Details

- The proof depended on **minimal** and **maximal** elements of O, but that is not critical
- Construction for **unbounded** outcomes/preferences:
 - 1. Construct utility for some bounded range of outcomes $u : \{o_s, ..., o_e\} \rightarrow [0,1].$
 - 2. For outcomes outside that range, choose an overlapping range $\{o_{s'}, \dots, o_{e'}\}$ with s' < s < e' < e
 - 3. Construct $u' : \{o_{s'}, \dots, o_{e'}\} \rightarrow [0,1]$ utility
 - 4. Find m > 0, b such that $mu'(o_s) + b = u(o_s)$ and $mu'(o_{e'}) = u(o_{e'})$
 - 5. Let u(o) = mu'(o) + b for $o \in \{o_{s'}, ..., o_{e'}\}$

Fun game: Buying lottery tickets

Write down the following numbers:

- 1. How much would you pay for the lottery [0.3:\$5, 0.3:\$7, 0.4:\$9]?
- 2. How much would you pay for the lottery [p:\$5, q:\$7, (1 - p - q):\$9]?
- 3. How much would you pay for the lottery [p:\$5, q:\$7, (1 - p - q):\$9] if you knew the last seven draws had been 5,5,7,5,9,9,5?

Beyond

von Neumann & Morgenstern

- The first step of the fun game was a good match to the utility theory we just learned.
 - If two people have different prices for step 1, what does that • say about their utility functions for money?
- The second and third steps, not so much!
 - If two people have different prices for step 2, what does that say about their utility functions?
 - What if two people have the same prices for step 2 but different prices for step 3?

Another Formal Setting

- States: Set S of elements s, s', ... with subsets A, B, C, ...
- **Consequences**: Set *F* of elements *f*, *g*, *h*, ...
- Acts: Arbitrary functions $f: S \rightarrow F$
- Preference relation ≥ **between acts**
- $(\mathbf{f} \succeq \mathbf{g} \text{ given } B) \iff$
 - $\mathbf{f}' \geq \mathbf{g}'$ for every \mathbf{f}', \mathbf{g}' that agree with \mathbf{f}, \mathbf{g} respectively on B and each other on \overline{B}

Another Representation Theorem

Theorem: [Savage, 1954] such that

$$\mathbf{f} \succeq \mathbf{g} \iff \sum_{i} P[B_i] U[f_i] \ge \sum_{i} P[B_i] U[g_i].$$

Suppose that a preference relation \geq satisfies postulates P1-P6. Then there exists a utility function U and a probability measure P

Postulates

- **P1** \geq is a simple order.
- **P2** $\forall \mathbf{f}, \mathbf{g}, B : (\mathbf{f} \geq \mathbf{g} \text{ given } B) \lor (\mathbf{g} \geq \mathbf{f} \text{ given } B)$
- **P3** $(\mathbf{f}(s) = g \land \mathbf{f}'(s) = g' \forall s \in B) \implies (\mathbf{f} \succeq \mathbf{f}' \text{ given } B \iff g \succeq g')$
- **P4** For every $A, B, (P[A] \le P[B]) \lor (P[B] \le P[A])$.
- **P5** It is false that for every $f, f', f \geq f'$.
- **P6** (Sure-thing principle)

Summary

- - \bullet certain set of axioms
 - theorem is about rational behaviour
- Can extend beyond this to "subjective" probabilities, using describe how agents manipulate probabilities.

• Using very simple axioms about preferences over lotteries, utility theory proves that rational agents ought to act as if they were maximizing the **expected value** of a real-valued function.

Rational agents are those whose behaviour satisfies a

• If you don't buy the axioms, then you shouldn't buy that this

axioms about preferences over uncertain "acts" that do not