Course Overview

CMPUT 654: Modelling Human Strategic Behaviour

Strategic Modelling

This course is about modelling human strategic behaviour:

- **Modelling:** Constructing formal, predictive models of action
- **Strategic:** Outcomes that an agent cares about depend on: •
 - 1. Agent's **own** actions
 - 2. Actions of **other** agents, with **independent** goals and priorities
- Human: Primarily concerned with modelling behaviour by people, not by algorithms (e.g., border gateway protocol)
 - Actual, empirical behaviour, not ideal behaviour

Framework

This course uses three main tools:

- 1. Game theory
- 2. Behavioural Game Theory
- 3. Data
- 4. Machine learning

1. Game Theory

- Solution concepts follow from assumptions
- We use the **representations and models** of game theory, usually not **solution concepts**
- Need to know the solution concepts anyway!
 - Interpretation of solutions and models
 - Understanding differences from the standard model

2. Behavioural Game Theory

- Inductive models, not just implications of assumptions
- Models are typically cognitively inspired
- Standard behavioural game theory often aims to explain anomalies
 - We'll take a much more predictive approach
- Much less conceptually unified than standard game theory

Experimental data

- Most existing behavioural research
- Old-school: In-person experiments, small n
- Recent: often Mechanical Turk

Field data

- Rare but out there •
- Much more exciting for ML modelling

3. Data

Lecture Outline

- 1. Overview
- 2. Logistics
- 3. Course Topics
- 4. Introductions

Course webpage: jrwright.info/bgtcourse/

- This is the **main source** for information about the class
- Slides, readings, assignments, deadlines

Contacting me:

- Discussion board: piazza.com/ualberta.ca/winter2019/cmput654/ for **public** questions about assignments, lecture material, etc.
- Email: james.wright@ualberta.ca \bullet for **private** questions (health problems, inquiries about grades)
- Office hours: After every lecture, or by appointment

Course Essentials

Prerequisites

- Prior knowledge of game theory is **NOT REQUIRED**
- Need to be able to follow/construct formal proofs and mathematical arguments
- Basic knowledge of **probability** (random variables, expectations, conditional probability, Bayes' rule)

Evaluation

Grade breakdown

- Assignments: 30%
- Midterm exam: 25%
- Research survey: 20%
- Survey presentation: 15%
- Survey peer review: 10%

Late assignments

• 20% deducted per day

Missed assignments or exams

- **Provide a note** from doctor, academic advisor, etc.
- Assignments score will be **reweighted** to exclude missed assignments
- If the midterm exam is missed, the marks from the **research survey** and **assignments** will be used in its place
 - i.e., grade will be 42.5% assignments, 57.5% research survey

Assignments

There will be three assignments (not weighted equally)

students:

- 1. You may not share or look at each other's written work
- 2. You must write up your solutions individually
- 3. You must list everyone you talked with about the assignment.

You are **encouraged to discuss** assignment questions with other

Research survey

Final part of the class is driven by a small research project

- Survey of literature of sub-area we did not cover in class
 - Could be an **application** area, specific **subset** of an area we did cover,
 - Ideally: Propose direction for **new research** (especially if you are considering working with me)
 - Novel research results **NOT REQUIRED** (but may get bonus marks)
- Deliverables:
 - 1. One-page outline
 - 2. Presentation to class
 - 3. Peer review of others' presentations
 - 4. Survey paper
- Can work in **groups**
 - Individually is better if you are considering working with me

Academic Conduct

- Submitting someone else's work as your own is plagiarism. ullet
- So is helping someone else to submit your work as their own.
- I report all cases of academic misconduct to the university. \bullet
- The university takes academic misconduct very seriously. Possible consequences:
 - Zero on the assignment or exam (virtually guaranteed)
 - Zero for the course
 - Permanent notation on transcript
 - Suspension or expulsion from the university

Readings

For Part 1 (Game theory)

Yoav Shoham and Kevin Leyton-Brown,

For Part 2 (Behavioural game theory):

- Original papers from the literature lacksquare
- Possibly lecture notes-style summaries ullet

For Part 3 (Research surveys):

- Self-directed readings from the literature
 - But feel free to ask me for pointers!

Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations

Enrollment

How many people present today are:

- Enrolled?
- Auditing with the hope of enrolling?
- Auditing without intending to enrol?

Course Topics

Game theory

Date	Topic	Readings & Milestones
Tue, Jan 8	Course overview	
Thu, Jan 10	Utility theory	<u>S&LB</u> §3.1
Tue, Jan 15	Game theory intro	<u>S&LB</u> §3.2–3.3.3
Thu, Jan 17	Mixed strategies	<u>S&LB</u> §3.2–3.3.3 Add/Drop deadline Jan 18
Tue, Jan 22	Alternative solution concepts	<u>S&LB</u> §3.4 Assignment 1 released
Thu, Jan 24	Perfect-information extensive-form games	<u>S&LB</u> §5.1
Tue, Jan 29	Imperfect-information extensive-form games	<u>S&LB</u> §5.2–5.2.2
Thu, Jan 31	Repeated games	<u>S&LB</u> §6.1
Tue, Feb 5	Bayesian games	S&LB §6.3 Assignment 1 due
Thu, Feb 7	Social choice	<pre>S&LB §9.0–9.4 (excluding Arrow's Theorem proof)</pre>
Tue, Feb 12	Mechanism design	S&LB §10.0–10.2 Assignment 2 released
Thu, Feb	Midterm exam	

14

Behavioural game theory

Research surveys

Date	Topic	Readings & Milestones
Tue, Feb 26	Behavioural economics intro	Assignment 2 due
Thu, Feb 28	Experimental design; presentation scheduling	Survey outlines due
Tue, Mar 5	Single-shot interactions	
Thu, Mar 7	Salience and focal points	
Tue, Mar 12	Fairness and social preferences	Assignment 3 released
Thu, Mar 14	Repeated interactions	
Tue, Mar 19	No-regret learning	
Thu, Mar 21	Behavioural macroeconomics/ finance (*)	

Date	Milestones
Tue, Mar 26	Assignment 3 due
Thu, Mar 28	
Tue, Apr 2	
Thu, Apr 4	
Tue, Apr 9	
Thu, Apr 11	Research survey due

Survey Topics

The ideal project is a **proposal** for novel work and a survey of the relevant related work

1. Predictive Models

- Feedback and Dynamic Behaviour
- Interpretability
- Characterizing Nonstrategic Behaviour
- Robust Learning in Continuous Domains

2. Agent Design

- Game Play
- Strategic Malware Detection
- Behavioural Macroeconomic Forecasting
- 3. Policy Design
 - Peer Grading Platforms
 - Misinformation in Social Networks \bullet
 - Traffic Optimization

Introductions

Let's get to know each other!

Each person in the room, please introduce yourself by telling us:

- Your name
- \bullet
- Why you are taking the class
- Anything else that you'd like us to know

Your academic background (undergrad, current year, etc.)

What you work on or hope to work on in your research

ABGT Reading Group

Topics related to algorithmic and behavioural game theory

Approximately 60-90 minutes per week

Starting in late January

Webpage: jrwright.info/abgt.html

Email me if you are interested in participating!

Summary

- Course webpage: jrwright.info/bgtcourse/
- ullet
- Research survey
- Reading group: jrwright.info/abgt.html

Data-driven behavioural modelling using lens of game theory