Bayesian Games

CMPUT 654: Modelling Human Strategic Behaviour

S&LB §6.3

Recap: Repeated Games

- A **repeated game** is one in which agents play the same normal form game (the **stage game**) multiple times.
- Finitely repeated: Can represent as an imperfect information extensive form game.
- Infinitely repeated: Life gets more complicated
 - Payoff to the game: either average or discounted reward
 - Pure strategies map from entire previous history to action
- Folk theorem characterizes which payoff profiles can arise in any equilibrium
 - All profiles that are both **enforceable** and **feasible**

Lecture Outline

- Logistics & Recap 1.
- 2. Bayesian Game Definitions
- 3. Strategies and Expected Utility
- Bayes-Nash Equilibrium 4.

- Everyone should have a slip of paper with 2 dollar values on it
- Play a sealed-bid first-price auction with three other people
 - If you win, utility is your first dollar value minus your bid \bullet
 - **If you lose**, utility is **0** \bullet
- Play again with the same neighbours, same valuation
- Then play again with same neighbours, valuation #2
- **Question:** How can we model this interaction as a game?

Fun Game!

Payoff Uncertainty

- common knowledge:
 - Number of players
 - Actions available to each player
- about the very game being played

• Up until now, we have assumed that the following are always

• **Payoffs** associated with each pure strategy profile

Bayesian games are games in which there is uncertainty

Bayesian Games

We will assume the following:

- 1. In every possible game, number of actions available to each player is the same; they differ only in their payoffs
- 2. Every agent's **beliefs** are posterior beliefs obtained by conditioning a **common prior** distribution on private signals.

There are at least three ways to define a Bayesian game.

Bayesian Games via Information Sets

Definition:

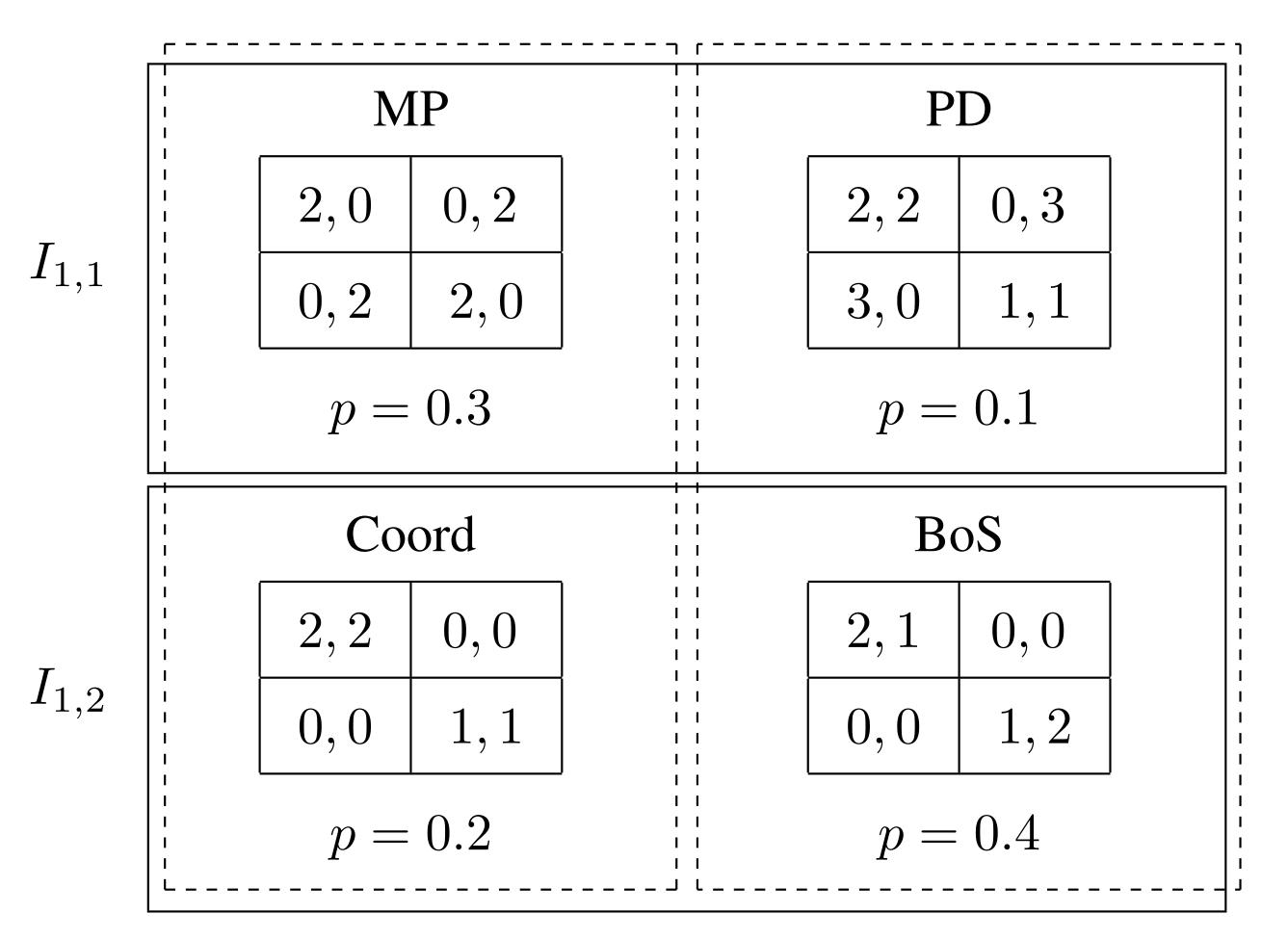
A **Bayesian game** is a tuple (N, G, P, I), where

- N is a set of n agents
- actions available to i in g'
- $P \in \Delta(G)$ is a **common prior** over games in G

• G is a set of games with N agents such that if $g, g' \in G$ then for each agent $i \in N$ the actions available to i in g are identical to the

• $I = (I_1, I_2, \ldots, I_n)$ is a tuple of **partitions** over G, one for each agent

 $I_{2,1}$



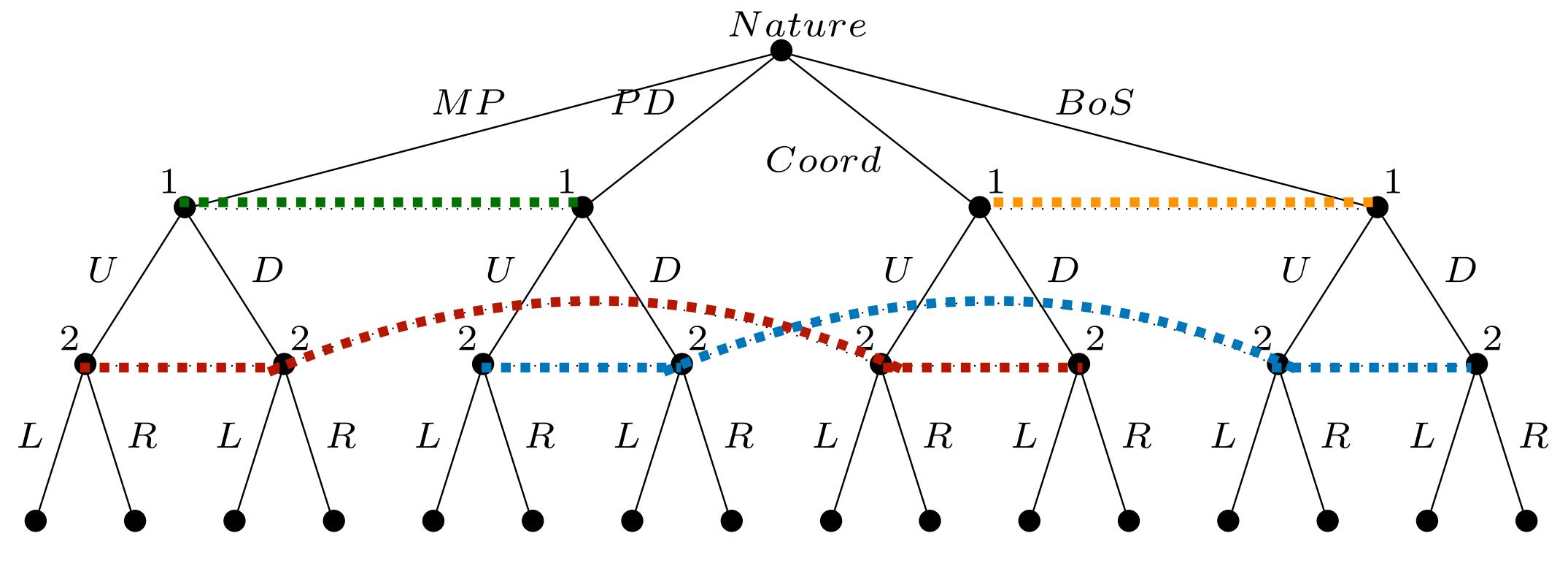
Information Sets Example

 $I_{2,2}$

Bayesian Games via Imperfect Information with Nature

- Could instead have a special agent **Nature** who plays according to a commonly-known mixed strategy
- Nature chooses the game at the outset
- Cumbersome for simultaneous-move Bayesian games
- Makes more sense for sequential-move Bayesian games, especially when players learn from other players' moves

Imperfect Information with Nature Example



 $(2,0) \ (0,2) \ (0,2) \ (2,0) \ (2,2) \ (0,3) \ (3,0) \ (1,1) \ (2,2) \ (0,0) \ (0,0) \ (1,1) \ (2,1) \ (0,0) \ (0,0) \ (1,2)$

Bayesian Games via Epistemic Types

Definition:

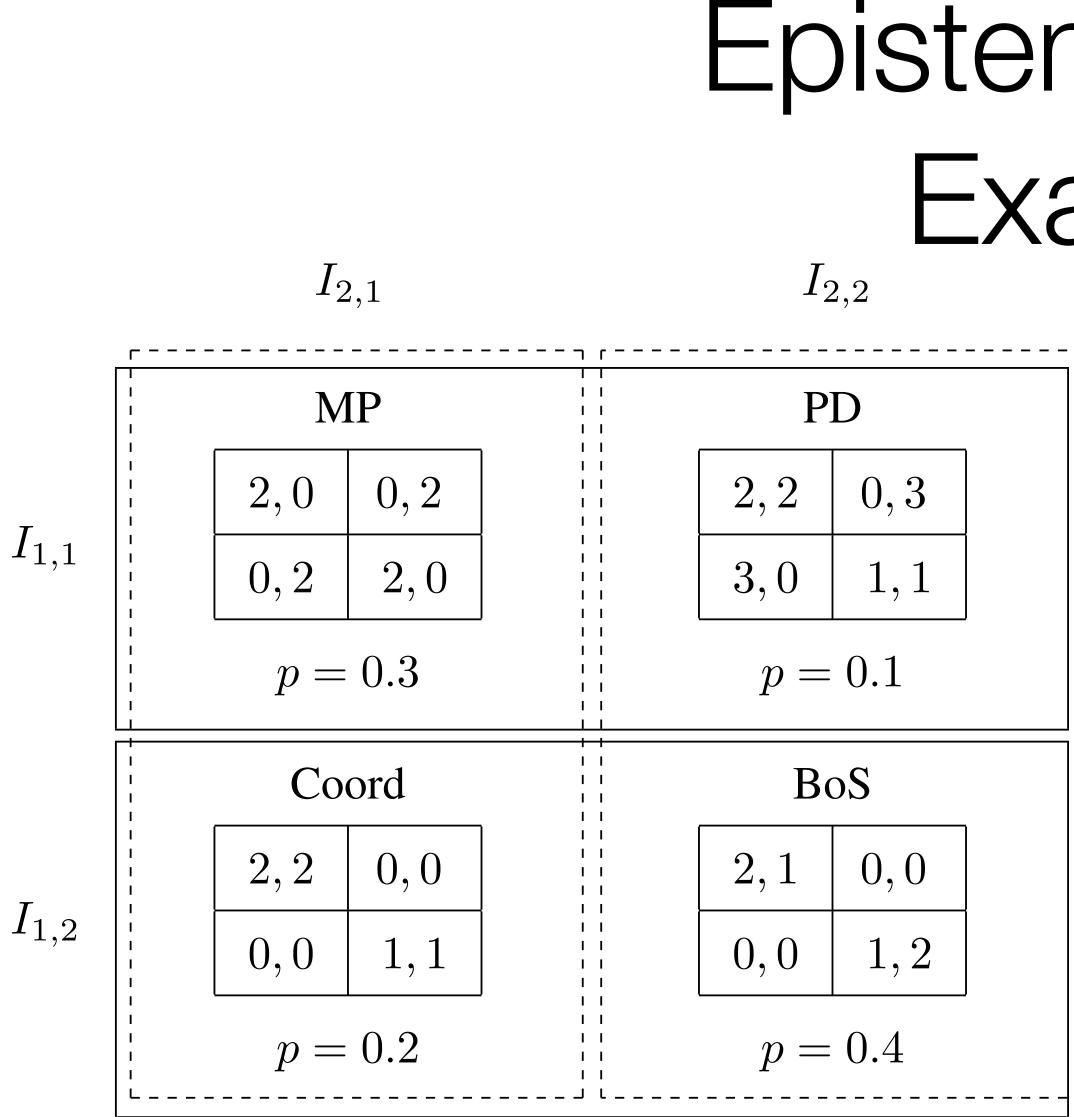
A **Bayesian game** is a tuple (N, A, Θ, p, u) where

- *N* is a set of *n players*
- $A = A_1 \times A_2 \times \cdots \times A_n$ is the set of **action profiles**
 - A_i is the **action set** for player i
- $\Theta = \Theta_1 \times \Theta_2 \times \cdots \times \Theta_n$ is the set of type profiles
 - Θ_i is the **type space** of player *i*
- $p \in \Delta(\Theta)$ is a **prior distribution** over type profiles
- $u = (u_1, u_2, \dots, u_n)$ is a tuple of **utility functions**, one for each player

•
$$u_i : A \times \Theta \to \mathbb{R}$$

What is a Type?

- All of the elements in the previous definition are **common knowledge**
 - Parameterizes utility functions in a known way lacksquare
- Every player knows their **own type**
- Type encapsulates all of the knowledge that a player has that is **not** common knowledge:
 - Beliefs about **own payoffs**
 - But also beliefs about other player's payoffs \bullet
 - But also beliefs about other player's beliefs about own payoffs \bullet



Epistemic Types Example $\frac{1}{a_1}$

a_1	a_2	$ heta_1$	$ heta_2$	u_1	u_2
U	L	$ heta_{1,1}$	$ heta_{2,1}$	2	0
U	L	$ heta_{1,1}$	$ heta_{2,2}$	2	2
U	L	$ heta_{1,2}$	$ heta_{2,1}$	2	2
U	L	$ heta_{1,2}$	$ heta_{2,2}$	2	1
U	R	$ heta_{1,1}$	$ heta_{2,1}$	0	2
U	R	$ heta_{1,1}$	$ heta_{2,2}$	0	3
U	R	$ heta_{1,2}$	$ heta_{2,1}$	0	0
U	R	$ heta_{1,2}$	$ heta_{2,2}$	0	0
a_1	a_2	$ heta_1$	$ heta_2$	u_1	u_2
<i>a</i> ₁ D	a ₂ L	$ heta_1 heta heta_{1,1}$	$ heta_2 heta heta_{2,1}$	u_1 0	$\frac{u_2}{2}$
			_		
D	L	$ heta_{1,1}$	$ heta_{2,1}$	0	2
D D	L L	$egin{array}{c} heta_{1,1} \ heta_{1,1} \end{array}$	$egin{array}{l} heta_{2,1} \ heta_{2,2} \end{array}$	0 3	2 0
D D D	L L L	$egin{array}{l} heta_{1,1} \ heta_{1,1} \ heta_{1,2} \end{array}$	$egin{array}{l} heta_{2,1} \ heta_{2,2} \ heta_{2,1} \ heta_{2,1} \end{array}$	0 3 0	2 0 0
D D D D	L L L L	$egin{array}{c} heta_{1,1} \ heta_{1,1} \ heta_{1,2} \ heta_{1,2} \ heta_{1,2} \end{array}$	$egin{aligned} heta_{2,1} \ heta_{2,2} \ heta_{2,1} \ heta_{2,1} \ heta_{2,1} \ heta_{2,2} \end{aligned}$	0 3 0 0	2 0 0 0
D D D D D	L L L L R	$egin{array}{c} heta_{1,1} \ heta_{1,1} \ heta_{1,2} \ heta_{1,2} \ heta_{1,2} \ heta_{1,1} \ heta_{1,1} \end{array}$	$egin{aligned} heta_{2,1} \ heta_{2,2} \ heta_{2,1} \ heta_{2,1} \ heta_{2,2} \ heta_{2,2} \ heta_{2,2} \ heta_{2,2} \ heta_{2,1} \end{aligned}$	0 3 0 0 2	2 0 0 0 0

Strategies

• **Pure strategy:** mapping from agent's type to an action

• Mixed strategy: distribution over an agent's pure strategies

• or: mapping from type to **distribution over actions**

 S_i : (

- **Question:** is this equivalent? Why or why not?
- We can use conditioning notation for the probability that i plays a_i given that their type is θ_i

 $s_i: \Theta_i \to A_i$

 $s_i \in \Delta(A^{\Theta_i})$

$$\Theta_i \to \Delta(A)$$

 $s_i(a_i \mid \theta_i)$

Expected Utility

The agent's expected utility is different depending on when they compute it, because it is taken with respect to different distributions.

Three relevant timeframes:

- 1. **Ex-ante: nobody's** type is known
- 3. *Ex-post*: everybody's type is known

2. *Ex-interim*: own type is known but not others'

Agent *i*'s *ex-post* expected utility in a Bayesian game (N, A, Θ, p, u) , where the agents' strategy profile is s and the agents' type profile is θ , is defined as

 $EU_i(s,\theta) = \sum_{a \in A} \left[\frac{1}{2} \right]$

The only source of uncertainty is in which actions will be realized from the mixed strategies.

Ex-post Expected Utility

$$\left(\prod_{j\in N} s_j(a_j \mid \theta_j)\right) u_i(a, \theta).$$

agents' strategy profile is s and i's type is θ_i , is defined as

$$EU_i(s,\theta_i) = \sum_{\theta_{-i}\in\Theta_{-i}} p(\theta_{-i} \mid \theta_i) \sum_{a\in A} \left(\prod_{j\in N} s_j(a_j \mid \theta_j) \right) u_i(a,\theta),$$

or equivalently as

$$EU_i(s,\theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}}$$

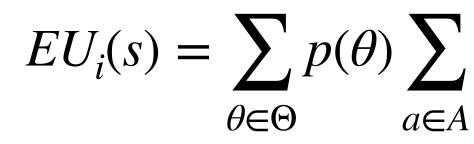
Uncertainty over both the actions realized from the mixed strategy profile, and the **types** of the other agents.

Ex-interim Expected Utility

Agent *i*'s ex-interim expected utility in a Bayesian game (N, A, Θ, p, u) , where the

 $p(\theta_{-i} \mid \theta_i) EU_i(s, (\theta_i, \theta_{-i})).$ -i

Agent *i*'s *ex-ante* expected utility in a Bayesian game (N, A, Θ, p, u) , where the agents' strategy profile is *s*, is defined as



or equivalently as

 $EU_i(s) =$ θ_{i}

or again equivalently as

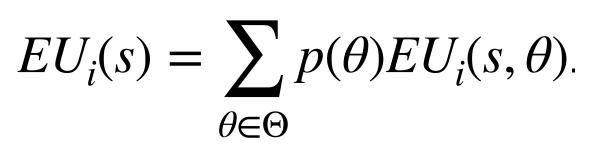
Ex-ante Expected Utility

$$\sum_{a \in A} \left(\prod_{j \in N} s_j(a_j \mid \theta_j) \right) u_i(a, \theta)$$

$$\sum_{\theta_i \in \Theta_i} p(\theta_i) EU_i(s, \theta_i),$$

Question:

Why are these three expressions equivalent?



Best Response

Question: What is a **best response** in a Bayesian game?

Definition:

The set of agent i's **best responses** to mixed strategy profile S_{i} are given by

 $BR_i(s_i) = ar$

Question: Why is this defined using *ex-ante* expected utility?

$$\operatorname{rg\,max}_{s_i' \in S_i} EU_i(s_i', s_{-i}).$$

Bayes-Nash Equilibrium

Definition:

- **Question:** What is the **induced normal form** for a Bayesian game?
- Question: What is a Nash equilibrium in a Bayesian game?

- A **Bayes-Nash equilibrium** is a mixed strategy profile *s* that satisfies
 - $\forall i \in N : s_i \in BR_i(s_{-i}).$

An *ex-post* equilibrium is a mixed strategy profile s that satisfies

$\forall \theta \in \Theta \ \forall i \in N : s_i \in$

- *Ex-post* equilibrium is similar to dominant-strategy equilibrium, but neither implies the other:
 - beliefs about others' strategies
 - others' types

Ex-post Equilibrium

$$\underset{s_i \in S_i}{\operatorname{arg\,max}} EU_i((s_i', s_{-i}), \theta).$$

Dominant strategy equilibrium: agents need not have accurate

• **Ex-post equilibrium:** agents need not have accurate beliefs about

Question:

Why isn't *ex-post* equilibrium implied by dominant strategy equilibrium?

Dominant Strategy Equilibrium vs Ex-post Equilibrium

Question: What is a dominant strategy in a Bayesian game?

Example:

A game in which a dominant strategy equilibrium is not an ex-post equilibrium:

$$\begin{split} N &= \{1,2\} \\ A_i &= \Theta_i = \{H,L\} & \forall i \in N \\ p(\theta) &= 0.25 & \forall \theta \in \Theta \\ u_i(a,\theta) &= \begin{cases} 10 \text{ if } a_i = \theta_{-i} = \theta_i, \\ 2 \text{ if } a_i = \theta_{-i} \neq \theta_i, \\ 0 \text{ otherwise.} \end{cases} \quad \forall i \in N \end{split}$$

Summary

- very game being played
- or as a **partition and prior** over games
- Can be defined using **epistemic types**
- **Expected utility** evaluates against three different distributions:
 - ex-ante, ex-interim, and ex-post
- **Bayes-Nash equilibrium** is the usual solution concept
 - **Ex-post equilibrium** is a stronger solution concept

Bayesian games represent settings in which there is uncertainty about the

Can be defined as game of imperfect information with a Nature player,