Repeated Games

CMPUT 654: Modelling Human Strategic Behaviour

S&LB §6.1

Assignment #1

Assignment #1 is now available on eclass •

- Worth approximately 19% of your total mark
- Don't leave it to the last minute
- Due **Tuesday Feb 6** at 11:59pm (**next week**)

Recap: Imperfect Information Extensive Form Example

- information set

We represent sequential play using **extensive form games**

In an **imperfect information** extensive form game, we represent private knowledge by grouping histories into information sets

• Players cannot distinguish which history they are in within an

Recap: Behavioural vs. Mixed Strategies

Definition:

Definition:

A **behavioural strategy** $b_i \in [\Delta(A)]^{I_i}$ is a probability distribution over an agent's actions at an **information set**, which is **sampled independently** each time the agent arrives at the information set.

Kuhn's Theorem:

These are **equivalent**(*) in games of **perfect recall**.

A mixed strategy $s_i \in \Delta(A^{I_i})$ is any distribution over an agent's pure strategies.

Recap: Normal to Extensive Form d С CDС -1,-1 -4,0 \boldsymbol{C} D 0,-4 -3,-3

Unlike perfect information games, we can go in the opposite direction and represent any normal form game as an imperfect information extensive form game

Lecture Outline

- 1. Recap
- 2. Repeated Games
- 3. Infinitely Repeated Games
- 4. The Folk Theorem

Repeated Game

- Some situations are well-modelled as the same agents playing a normalform game **multiple times**.
 - The normal-form game is the stage game; the whole game of playing the stage game repeatedly is a **repeated game**.
 - The stage game can be repeated a finite or an infinite number of times.
- Questions to consider:
 - 1. What do agents **observe**?
 - 2. What do agents **remember**?
 - 3. What is the agents' **utility** for the whole repeated game?

Finitely Repeated Game

Suppose that *n* players play a normal f **Questions:**

- 1. Do they observe the other players' actions? If so, when?
- 2. Do they **remember** what happened in the previous games?
- 3. What is the **utility** for the whole game?
- 4. What are the **pure strategies**?

Suppose that *n* players play a normal form game against each other $k \in \mathbb{N}$ times.

Representing Finitely Repeated Games

- extensive form games
- We can do the same for **repeated games**:

	С	d	
С	-1,-1	-4,0	
D	0,-4	-3,-3	
	and then		
	С	d	
С	-1,-1	-4,0	
D	0,-4	-3,-3	

• Recall that we can represent normal form games as **imperfect information**

Fun (Repeated) Game

- Play at least two people

Play the **Prisoner's Dilemma** five times in a row against the **same person**

Properties of Finitely Repeated Games

- Playing an equilibrium of the stage game at every stage is an equilibrium of the repeated game (**why?**)
 - Instance of a stationary strategy
- In general, pure strategies can depend on the \bullet previous history (why?)
- **Question:** When the normal form game has a lacksquarestrictly dominant strategy, what can we say about the equilibrium of the finitely repeated game?

Infinitely Repeated Game

Suppose that *n* players play a normany times.

Questions:

- 1. Do they remember what happened in the previous games?
- 2. What is the **utility** for the whole game?
- 3. What are the **pure strategies**?
- 4. Can we write these games in the imperfect information extensive form?

Suppose that *n* players play a normal form game against each other infinitely

Payoffs in Infinitely Repeated Games

- Question: What are the payoffs in an infinitely repeated game?
 - We cannot take the sum of payoffs in an infinitely repeated game (why not?)
 - We cannot put the overall utility on the terminal nodes, because there aren't any
- Two possible approaches:
 - 1. Average reward: Take the limit of the average reward to be the overall reward of the game
 - 2. **Discounted reward:** Apply a **discount factor** to future rewards to guarantee that they will converge

Average Reward

Definition:

Given an infinite sequence of payoffs $r_i^{(1)}, r_i^{(2)}, \ldots$ for player *i*, the

average reward of *i* is

Problem: May not converge (why?)

Discounted Reward

Definition:

factor $0 \le \beta \le 1$, the **future discounted reward** of *i* is

- Interpretations: \bullet
 - rewards they have to wait for.
 - with probability 1β .
- The two interpretations have identical implications for analyzing the game.

Given an infinite sequence of payoffs $r_i^{(1)}, r_i^{(2)}, \dots$ for player *i*, and a discount

$$\sum_{i=1}^{\infty} \beta^{t} r_{i}^{(t)}.$$

1. Agent is **impatient**: cares more about rewards that they will receive earlier than

2. Agent cares equally about all rewards, but at any given round the game will stop

Strategy Spaces in Infinitely Repeated Games

Question: What is a **pure strategy** in an infinitely repeated game?

Definition: For a stage game G = (N, A, u), let $A^* = \{\emptyset\} \cup A$

be the set of **histories** of the infinitely repeated game. Then a **pure strategy** of the infinitely repeated game for an agent i is a mapping $s_i: A^* \to A_i$ from histories to player *i*'s actions.

t
¹
$$\cup A^2 \cup \cdots = \bigcup_{t=0}^{\infty} A^t$$

Equilibria in Infinitely Repeated Games

- Question: Are infinitely repeated games guaranteed to have Nash equilibria?
 - Recall: Nash's Theorem only applies to finite games
- Can we characterize the set of equilibria for an infinitely repeated game?
 - Can't build the induced normal form, there are infinitely many pure strategies (why?)
 - There could even be infinitely many pure strategy Nash equilibria! (how?)
- We can characterize the set of **payoff profiles** that are achievable in an equilibrium, instead of characterizing the equilibria themselves.

Enforceable

Definition: Let $v_i = \min \max u_i(s_i, s_{-i})$ be *i*'s minmax value in G = (N, A, u). $S_i \in S_i$ $S_i \in S_i$ Then a payoff profile $r = (r_1, \ldots, r_n)$ is **enforceable** if $r_i \ge v_i$ for all $i \in N$.

can ensure that i's utility is no greater than r_i .

• A payoff vector is enforceable (on i) if the other agents working together

Feasible

Definition:

values $\{\alpha_a \mid a \in A\}$ such that for all $i \in N$, $r_i =$ with $\sum_{a \in A} \alpha_a = 1$.

outcomes in G.

A payoff profile $r = (r_1, \ldots, r_n)$ is **feasible** if there exist **rational**, non-negative

$$\sum_{a \in A} \alpha_a u_i(a),$$

• A payoff profile is feasible if it is a (rational) convex combination of the

Folk Theorem

Theorem:

Consider any n-player normal form game G and payoff profile $r = (r_1, \ldots, r_n).$

- 1. If r is the payoff profile for any Nash equilibrium of the infinitely repeated G with average rewards, then r is enforceable.
- 2. If r is both feasible and enforceable, then r is the payoff profile for some Nash equilibrium of the infinitely repeated G with average rewards.
- Whole family of similar proofs for discounted rewards case, subgame perfect equilibria, real convex combinations, etc.

Folk Theorem Proof Sketch: Nash \implies Enforceable

- profile in a Nash equilibrium s^* of the infinitely repeated game.
- Consider the strategy $s'_i(h) \in BR_i(s^*_{-i}(h))$ for each $h \in A^*$.
- (**why**?)
- an equilibrium.

• Suppose for contradiction that r is **not** enforceable, but r is the payoff

• Player *i* receives at least $v_i > r_i$ in every stage game by playing strategy s'_i

• So strategy s'_i is a utility-increasing deviation from s^* , and hence s^* is not

Folk Theorem Proof Sketch: Enforceable & Feasible \implies Nash

- Suppose that r is both feasible and enforceable.
- frequency α_{α} (since α_{α} 's are all rational).
- **GRIM TRIGGER** Strategy)

 - Thus there is no utility-increasing deviation for i.

• We can construct a strategy profile s^* that visits each action profile a with

• At every history where a player *i* has not played their part of the cycle, all of the other players switch to playing the minmax strategy against i (this is called a

• That makes *i*'s overall utility for the game $v_i \leq r_i$ for any deviation s'_i . (**why**?)

Summary

- A **repeated game** is one in which agents play the same normal form game (the stage game) multiple times.
- Finitely repeated: Can represent as an imperfect information \bullet extensive form game.
- **Infinitely repeated:** Life gets more complicated \bullet
 - Payoff to the game: either average or discounted reward
 - Pure strategies map from entire previous history to action
- Folk theorem characterizes which payoff profiles can arise in any equilibrium lacksquare All profiles that are both enforceable and feasible.