Further Solution Concepts 2 &
Computational Issues

CMPUT 654: Modelling Human Strategic Behaviour



Assignment #1

 Assignment #1 will be released later today

See eclass for downloading and submitting

* Due Tuesday Feb 6 at 11:59pm



Recap: Solution Concepts

Maxmin strategies maximize an agent’'s guaranteed payoff
Minmax strategies minimize the other agent's payoft as much as possible

The Minimax Theorem:

 Maxmin and minmax strategies are the only Nash equilibrium strategies in
Zero-sum games

* Every Nash equilibrium in a zero-sum game has the same payoff

Dominated strategies can be removed iteratively without strategically
changing the game (too much)

Rationalizable strategies are any that are a best response to some
rational belief



Recap: e-Nasnh equiliorium

* |n a Nash equilibrium, agents best respond perfectly

 What if they are indifferent to very small gains in utility”

* Could reflect modelling error (e.g., unmodelled cost of
computational effort)

Definition:
For any € > O, a strategy profile s is an e-Nash equilibrium if, for all

agents I and strategies s; # s,

u(s;, s_;) > u(s;,s_)—e.

Questions:

For a given € > 0,

1. Is an e-Nash
equilibrium
guaranteed to exist”

2. |Is more than one &-

Nash equilibrium
guaranteed to exist?




e-Nash equilibrium example

D 1+(e/2), 1 500, 500

Questions:

1. What are the Nash
equilibria of this game?

2. What are the e-Nash

equilibria of this game?

e Every Nash equilibrium is surrounded by a region of e-Nash equilibria

* Every numerical algorithm for computing Nash equilibrium

actually computes e-Nash equilibrium

e However, the reverse is not true! Payoffs from an e-Nash equilibrium

can be arbitrarily far from Nash equilibrium payoffs.
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Computing Mixed Equilibrium

How can we compute the mixed equilibrium for Battle of the Sexes”?

Every pure strategy in the support of a mixed strategy equilibrium must have equal
utility (why?)

—> If you know the support of the equilibrium, you can solve a system of Ballet Soccer
equations

. Ballet 2,1 0,0
Suppose s.(B) = p in Battle of the Sexes. Solve for p:

u(B,s.)=ul(S,s,) Soccer 0,0 1,2
2p+0(1 —p)=0p+ 1(1 — p)
3p =1
|
p=—

3



Correlated Equilibrium Examples

Ballet Soccer

* [n the unigue mixed strategy equiliorium of Battle of the Sexes, each
olayer gets a utility of 2/3

Ballet 2, 1 0,0

e |f the players could first olbbserve a coin flip, they could coordinate on
Soccer 0,0 1,2 which pure strategy equilibrium to play

e Each would get utility of 1.5

* Fairer than either pure strategy equilibrium,
Go Wait and Pareto dominates the mixed strategy equilibrium

* Correlated equilibrium is a solution concept in which agents get

Go -10,-10 1,0 , , _ . . .
’ private, potentially-correlated signals before choosing their action

Wait 0,1 -1, -1 * In both of these example, each agent sees the same signal
oerfectly, but that Is not necessary in general




Correlated Equilibrium

Definition:
Given an n-agent game G = (IV, A, u), a correlated equilibrium is a tuple (v, 7, 0),
where

e v=(vy,...,V,)Iis atuple of random variables with domains (D;, ..., D,),

e IS ajoint distribution over v,
Question: \Why do the 6;'s

+ 0=(0y,...,0,) isavector of mappings 0; : D; = A;, and  |map to pure strategies
instead of mixed strategies?

» for every agent i and mapping o’ : D; = A,

Y wdufod),...0d) = ), adufo(d),....c/d), ....0,(d,)

deDX---XD, deDX---XD,



Correlated Equilibrium Properties

Theorem:

—or every Nash equilibrium, there exists a corresponding correlated
equilibrium in which each action profile appears with the same frequency.
(how?)

Theorem:
Any convex combination of correlated equilibrium payoffs can be realized In
some correlated equilibrium. (how?)




Correlated Equilibrium
Another eExample

Soccer 0,0 1,2

* |n our example correlated equilibria, each agent best-responded to the other at every signal Go  Wa
e This is not a requirement of a correlated equilibrium Go | -10,-10 | 1,0
» Consider this correlated equiliorium, with D, = {x, y,z} and D, = {m, r}: S I
7 [(x,m)| = .25 c(x)=X o(m=M ] y -
T|,m) =25 o)=Y
T [(z, r)] =.5 c(z) =72 c(r) =R X 0,8 3,6 9,1
* Question: Does the column player best-respond at each signal”
Y 0,2 3,9 -12,10
* Question: \What are the marginal probabilities for each player's actions?
* Question: \What would happen if the agents played mixed strategies 5 10 0.0 27

with those marginal probabilities”



L Inear Programming

Definition:
A linear program consists of

e A set of real-valued variables {xi, ..., x,}

» A linear objective function defined by weights {wy, ..., w, }

» A set of linear constraints of the form 27 a;x; < b

Sample:

n
maximize 2 WiX;
Jj=1
n
subject to 2 a;x; < b, Vi<i<m
Jj=1

x; > 0 Vi<j<n



LInear Program necrie 3

subject to Z a;x; < b,

Properties o

Linear programs can be solved in polynomial time by generic algorithms (e.qg.,
ellipsoid algorithm)

e SO writing a problem as a linear program constitutes a proof that it is
solvable In polynomial time

Negating weights W; allows us to minimize or maximize the objective

Negating constraint coefficients a;; allows for greater-than-or-equal constraints

Providing both greater-than-or-equal and less-than-or-equal constraints allows
for equality constraints

Cannot always express strict inequalities (although there are tricks)



Computing Nash Equilibrium

* [he problem of computing a Nash equiliorium is known to be
computationally hard (PPAD-complete)

e Even for two-player games!

 But there are some special cases that we can compute efficiently



Computing Nash Equilibrium:
/ero-Sum Games

subject to Z uy(ay, ay)s,(ay) < U Va, € A

a,€EA,

Z s,(a,) =1

a,EA,
s>(a,) > 0 Va, € A,

o [his linear program computes Uik, player 1's minmax value,

and s,, player 2's minmax strategy against player 1

e By the minimax theorem, this is player 2's equilibrium strategy

o Compute player 1's equilibrium strategy analogously



Computing Maxmin Strategies:
Two-Player, General-Sum Games

* We can efficiently compute the maxmin strategies for agents in a
two-player zero-sum game

* [he maxmin strategy for an agent in a general-sum game is their
pest response to an imaginary agent that is trying to hurt them

o compute player 1's maxmin strategy in a general-sum game:
1. Construct a zero-sum game from player 1's payoffs,

2. Find player 1's minmax strategy in the constructed game
(using the program from the previous slide)




Computing Nash Equilibrium:
Two-Player, General Sum Games

 Finding an equilibrium in general i1s hard
inding quiliorium in g | Questions:

e But if we already know the support of the equilibrium, then

we can compute it efficiently in a two-player game: 1. Why can't we just set

o; = A, for every
Z s_(a_j)ula,a_;) = v Vie {l,2},a; € o; agent and solve
a_€o._. once”

l

Z s_(a_)ula,a_;) < v, Vie {l,2},a; & o; 2. Why can't we just try
every possible

a_€o._,
rt”
s{a;) > 0 vie [12),a, €0 SHPPe
s(a;) = 0 Vie {12}, a. & o, 3. Why wouldn't this
work for n-player
2 sia;) =1 Vie {12} games?

a,EA,



Computing Nash Equilibrium:
General-Sum n-Player Games

* |n theory, computing an equilibrium in n-player games and two-player games
nave equal computational complexity

* |n practice, two-player games tend to be faster to solve:

* [emke-Howson pivoting algorithm based on a linear complementarity
program

e For n-player games, homotopy-following methods:

« Construct a family of parameterized perturbations of the game, with t = 0

being a trivial game with a known equilibrium, and ¢ = 1 being the original
game

« Move t along [0, 1], adjusting the equilibrium as you go, until you reach ¢ = 1



Computing Correlated Equilibrium

o Correlated equilibria can be found efficiently even in general-sum, n-player
games

* Every correlated equilibrium induces a probability distribution over action
profiles

» (Corresponds to a correlated equilibrium where Nature randomly
chooses an action protile, and the agent's signals are their own actions
N that profile

e 50 finding a distribution over action profiles in which each agent would
always prefer to play thelr recommended action is sufficient to find a
correlated equilibrium (why?)




Computing Correlated Equilibrium in
Polynomial [1ime

Z pla)ula) > Z pla)ulal,a_;) VieN, a;,a € A,

a€Al|aEa a€Al|aEa

p(a) >0 Vae A

We could find the social-welfare-optimizing correlated
equilibrium by adding an objective function:

maximize ) p(a) ) ufa)

aceA 1EN



Summary

Correlated equilibria: stable when agents have signals from a
possibly-correlated randomizing device

Linear programs are a flexible encoding that can always be solved In
polytime

-Inding a Nash equilibrium is computationally hard in general
Special cases are efficiently computable:
Nash equilibria in zero-sum games

Maxmin strategies (and values) in two-player games

Correlated equilibrium



