
Further Solution Concepts 2 &  
Computational Issues

CMPUT 654: Modelling Human Strategic Behaviour 
 

S&LB §3.4.5, 3.4.7, 4.1, 4.2.3, 4.6



Assignment #1

• Assignment #1 will be released later today 
See eclass for downloading and submitting


• Due Tuesday Feb 6 at 11:59pm



Recap: Solution Concepts
• Maxmin strategies maximize an agent's guaranteed payoff


• Minmax strategies minimize the other agent's payoff as much as possible


• The Minimax Theorem: 

• Maxmin and minmax strategies are the only Nash equilibrium strategies in 

zero-sum games

• Every Nash equilibrium in a zero-sum game has the same payoff


• Dominated strategies can be removed iteratively without strategically 
changing the game (too much)


• Rationalizable strategies are any that are a best response to some 
rational belief



Recap: 𝜀-Nash Equilibrium
• In a Nash equilibrium, agents best respond perfectly


• What if they are indifferent to very small gains in utility?

• Could reflect modelling error (e.g., unmodelled cost of 

computational effort)


Definition: 
For any 𝜀 > 0, a strategy profile  is an 𝜀-Nash equilibrium if, for all 

agents  and strategies ,


 .

s
i s′￼i ≠ si

ui(si, s−i) ≥ ui(s′￼i, s−i)−ϵ

Questions:


For a given ,


1. Is an 𝜀-Nash 
equilibrium 
guaranteed to exist?


2. Is more than one 𝜀-
Nash equilibrium 
guaranteed to exist?  

ϵ > 0



• Every Nash equilibrium is surrounded by a region of 𝜀-Nash equilibria


• Every numerical algorithm for computing Nash equilibrium 
actually computes 𝜀-Nash equilibrium


• However, the reverse is not true!  Payoffs from an 𝜀-Nash equilibrium 
can be arbitrarily far from Nash equilibrium payoffs.

𝜀-Nash Equilibrium Example
L R

U 1, 1 0, 0

D 1+(𝜀/2), 1 500, 500

Questions:


1. What are the Nash 
equilibria of this game?


2. What are the 𝜀-Nash 
equilibria of this game?



Lecture Outline

1. Recap & Logistics


2. Correlated Equilibrium


3. Linear Programming


4. Computing Nash Equilibrium 


5. Computing Correlated Equilbrium



Computing Mixed Equilibrium
• How can we compute the mixed equilibrium for Battle of the Sexes?


• Every pure strategy in the support of a mixed strategy equilibrium must have equal 
utility (why?)


•  If you know the support of the equilibrium, you can solve a system of 
equations


• Suppose  in Battle of the Sexes.  Solve for :


 

⟹

sc(B) = p p

ur(B, sc) = ur(S, sc)
2p + 0(1 − p) = 0p + 1(1 − p)

3p = 1

p =
1
3

Ballet Soccer

Ballet 2, 1 0, 0

Soccer 0, 0 1, 2



Correlated Equilibrium Examples

• In the unique mixed strategy equilibrium of Battle of the Sexes, each 
player gets a utility of 2/3


• If the players could first observe a coin flip, they could coordinate on 
which pure strategy equilibrium to play


• Each would get utility of 1.5

• Fairer than either pure strategy equilibrium,  

and Pareto dominates the mixed strategy equilibrium


• Correlated equilibrium is a solution concept in which agents get 
private, potentially-correlated signals before choosing their action


• In both of these example, each agent sees the same signal 
perfectly, but that is not necessary in general

Ballet Soccer

Ballet 2, 1 0, 0

Soccer 0, 0 1, 2

Go Wait

Go -10, -10 1, 0

Wait 0, 1 -1, -1



Correlated Equilibrium
Definition: 
Given an -agent game , a correlated equilibrium is a tuple  , 
where


•  is a tuple of random variables with domains ,


•  is a joint distribution over ,


•  is a vector of mappings , and


• for every agent  and mapping ,


 
  

n G = (N, A, u) (v, π, σ)

v = (v1, …, vn) (D1, …, Dn)

π v

σ = (σ1, …, σn) σi : Di → Ai

i σ′￼ : Di → Ai

∑
d∈D1×⋯×Dn

π(d)ui(σ1(d1), …, σn(dn)) ≥ ∑
d∈D1×⋯×Dn

π(d)ui(σ1(d1), …, σ′￼i(di), …, σn(dn))

Question: Why do the 's 
map to pure strategies 
instead of mixed strategies?

σi



Correlated Equilibrium Properties

Theorem: 
For every Nash equilibrium, there exists a corresponding correlated 
equilibrium in which each action profile appears with the same frequency. 
(how?)


Theorem: 
Any convex combination of correlated equilibrium payoffs can be realized in 
some correlated equilibrium. (how?)



Correlated Equilibrium 
Another Example

• In our example correlated equilibria, each agent best-responded to the other at every signal


• This is not a requirement of a correlated equilibrium


• Consider this correlated equilibrium, with  and :





• Question: Does the column player best-respond at each signal?


• Question: What are the marginal probabilities for each player's actions?


• Question: What would happen if the agents played mixed strategies 
with those marginal probabilities?

D1 = {x, y, z} D2 = {m, r}

π [(x, m)] = .25 σr(x) = X σc(m) = M

π [(y, m)] = .25 σr(y) = Y

π [(z, r)] = .5 σr(z) = Z σr(r) = R

Ballet Soccer

Ballet 2, 1 0, 0

Soccer 0, 0 1, 2

Go Wait

Go -10, -10 1, 0

Wait 0, 1 -1, -1

L M R

X 0,8 3,6 -9,1

Y 0,2 3,9 -12,10

Z 1,0 0,-2 7,7



Linear Programming
Definition: 
A linear program consists of


• A set of real-valued variables 


• A linear objective function defined by weights 


• A set of linear constraints of the form 


Sample: 

{x1, …, xn}

{w1, …, wn}

Σn
j=1ajxj ≤ b

maximize 
n

∑
j=1

wjxj

subject to 
n

∑
j=1

aijxj ≤ bi ∀1 ≤ i ≤ m

xj ≥ 0 ∀1 ≤ j ≤ n



Linear Program

Properties

• Linear programs can be solved in polynomial time by generic algorithms (e.g., 
ellipsoid algorithm)


• So writing a problem as a linear program constitutes a proof that it is 
solvable in polynomial time


• Negating weights  allows us to minimize or maximize the objective


• Negating constraint coefficients  allows for greater-than-or-equal constraints


• Providing both greater-than-or-equal and less-than-or-equal constraints allows 
for equality constraints


• Cannot always express strict inequalities (although there are tricks)

wj

aij

maximize 
n

∑
j=1

wjxj

subject to 
n

∑
j=1

aijxj ≤ bi ∀1 ≤ i ≤ m

xj ≥ 0 ∀1 ≤ j ≤ n



Computing Nash Equilibrium

• The problem of computing a Nash equilibrium is known to be 
computationally hard (PPAD-complete)


• Even for two-player games!


• But there are some special cases that we can compute efficiently



minimize U*1
subject to  ∑

a2∈A2

u1(a1, a2)s2(a2) ≤ U*1 ∀a1 ∈ A1

∑
a2∈A2

s2(a2) = 1

s2(a2) ≥ 0 ∀a2 ∈ A2

minimize U*1
subject to  ∑

a2∈A2

u1(a1, a2)s2(a2) ≤ U*1 ∀a1 ∈ A1

∑
a2∈A2

s2(a2) = 1

s2(a2) ≥ 0 ∀a2 ∈ A2

Computing Nash Equilibrium: 
Zero-Sum Games

• This linear program computes , player 1's minmax value,  
and , player 2's minmax strategy against player 1


• By the minimax theorem, this is player 2's equilibrium strategy

• Compute player 1's equilibrium strategy analogously

U*1
s2



Computing Maxmin Strategies: 
Two-Player, General-Sum Games

• We can efficiently compute the maxmin strategies for agents in a 
two-player zero-sum game


• The maxmin strategy for an agent in a general-sum game is their 
best response to an imaginary agent that is trying to hurt them


• To compute player 1's maxmin strategy in a general-sum game:

1. Construct a zero-sum game from player 1's payoffs, 

2. Find player 1's minmax strategy in the constructed game 

(using the program from the previous slide)



Computing Nash Equilibrium: 
Two-Player, General Sum Games
• Finding an equilibrium in general is hard


• But if we already know the support of the equilibrium, then 
we can compute it efficiently in a two-player game:


∑
a−i∈σ−i

s−i(a−i)ui(ai, a−i) = vi ∀i ∈ {1,2}, ai ∈ σi

∑
a−i∈σ−i

s−i(a−i)ui(ai, a−i) ≤ vi ∀i ∈ {1,2}, ai ∉ σi

si(ai) ≥ 0 ∀i ∈ {1,2}, ai ∈ σi

si(ai) = 0 ∀i ∈ {1,2}, ai ∉ σi

∑
ai∈Ai

si(ai) = 1 ∀i ∈ {1,2}

Questions:


1. Why can't we just set 
 for every 

agent and solve 
once?


2. Why can't we just try 
every possible 
support?


3. Why wouldn't this 
work for -player 
games?

σi = Ai

n



Computing Nash Equilibrium: 
General-Sum -Player Gamesn

• In theory, computing an equilibrium in -player games and two-player games 
have equal computational complexity


• In practice, two-player games tend to be faster to solve:


• Lemke-Howson pivoting algorithm based on a linear complementarity 
program


• For -player games, homotopy-following methods:


• Construct a family of parameterized perturbations of the game, with  
being a trivial game with a known equilibrium, and  being the original 
game


• Move  along , adjusting the equilibrium as you go, until you reach  

n

n

t = 0
t = 1

t [0,1] t = 1



Computing Correlated Equilibrium
• Correlated equilibria can be found efficiently even in general-sum, -player 

games


• Every correlated equilibrium induces a probability distribution over action 
profiles


• Corresponds to a correlated equilibrium where Nature randomly 
chooses an action profile, and the agent's signals are their own actions 
in that profile


• So finding a distribution over action profiles in which each agent would 
always prefer to play their recommended action is sufficient to find a 
correlated equilibrium (why?)

n



∑
a∈A|ai∈a

p(a)ui(a) ≥ ∑
a∈A|ai∈a

p(a)ui(a′￼i, a−i) ∀i ∈ N, ai, a′￼i ∈ Ai

p(a) ≥ 0 ∀a ∈ A

∑
a∈A

p(a) = 1

Computing Correlated Equilibrium in 
Polynomial Time

We could find the social-welfare-optimizing correlated 
equilibrium by adding an objective function:

maximize ∑
a∈A

p(a)∑
i∈N

ui(a)



Summary
• Correlated equilibria: stable when agents have signals from a 

possibly-correlated randomizing device

• Linear programs are a flexible encoding that can always be solved in 

polytime

• Finding a Nash equilibrium is computationally hard in general

• Special cases are efficiently computable:


• Nash equilibria in zero-sum games

• Maxmin strategies (and values) in two-player games

• Correlated equilibrium


