Further Solution Concepts

CMPUT 654: Modelling Human Strategic Behaviour

S&LB §3.4

Recap: Pareto Optimality

Definition: Outcome *o* **Pareto dominates** *o*' if 1. $\forall i \in N : o \geq_i o'$, and 2. $\exists i \in N : o \succ_i o'$. $i \in N$ and $u_i(a) > u_i(a')$ for some $i \in N$. dominates it.

Equivalently, action profile a Pareto dominates a' if $u_i(a) \ge u_i(a')$ for all

Definition: An outcome o^* is **Pareto optimal** if no other outcome Pareto

Recap: Best Response and Nash Equilibrium

Definition:

The set of *i*'s **best responses** to a strategy profile $S_{i} \in S_{i}$ is

$BR_i(s_{-i}) \doteq \{s_i^* \in S_i \mid u_i($

Definition:

A strategy profile $s \in S$ is a Nash equilibrium iff

- $\forall i \in N$:

$$(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i}) \ \forall s_i \in S_i\}$$

$$s_i \in BR_{-i}(s_{-i})$$

• When at least one s_i is mixed, s is a mixed strategy Nash equilibrium

• When every s_i is deterministic, s is a pure strategy Nash equilibrium

Lecture Outline

- 1. Recap & Logistics
- 2. Maxmin Strategies
- 3. Dominated Strategies
- 4. Rationalizability
- 5. ϵ -Nash Equilibrium
- 6. Correlated Equilibrium

What is the maximum amount that an agent can guarantee in expectation?

Definition:

$$\overline{s}_i = \arg \max_{s_i \in S_i} \left[\min_{\substack{s_{-i} \in S_{-i}}} u_i(s_i, s_{-i}) \right]$$

Definition:

strategy:

$$\overline{v}_i = \max_{s_i \in S_i}$$

Maxmin Strategies

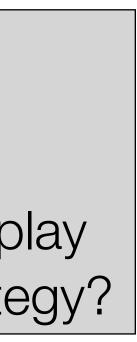
Question:

Why would an agent want to play a maxmin strategy?

A maxmin strategy for i is a strategy \overline{s}_i that maximizes i's worst-case payoff:

The maxmin value of a game for i is the value \overline{v}_i guaranteed by a maxmin

$$\min_{\substack{s_{-i} \in S_{-i}}} u_i(s_i, s_{-i})$$



The corresponding strategy for the other player is the minmax strategy: the strategy that **minimizes the** other player's payoff.

Definition: (two-player games) In a two-player game, the **minmax strategy** for player

 $\underline{s}_i = \arg\min_{s_i \in S_i}$

Definition: (*n*-player games) profile $\underline{s}_{(-i)}$ in the expression

 $\underline{S}_{(-j)} = \arg \prod_{j=1}^{n}$

and the minmax value for player j is $\underline{v}_j = \min_{s_{-j} \in S_{-j}} \max_{s_j \in S_j}$

Minmax Strategies

Question:

Why would an agent want to play a minmax strategy?

i against player
$$-i$$
 is

$$\left[\max_{s_{-i}\in S_{-i}} u_{-i}(s_i, s_{-i})\right].$$

In an *n*-player game, the minmax strategy for player *i* against player $j \neq i$ is *i*'s component of the mixed strategy

$$\min_{\substack{\in S_{-j} \\ s_j \in S_j}} \left[\max_{\substack{s_j \in S_j \\ u_j(s_j, s_{-j})}} \right],$$

Minimax Theorem

Theorem: [von Neumann, 1928] In any finite, two-player, zero-sum game, in any Nash equilibrium $s^* \in S$, each player receives an expected utility v_i equal to both their maxmin and their minmax value.

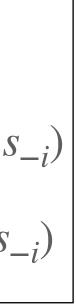
Minimax Theorem Proof

Proof sketch:

- 1. Suppose that $v_i < \overline{v}_i$. But then i c their maxmin strategy. So $v_i \ge \overline{v}_i$.
- 2. -i's equilibrium payoff is $v_{-i} = \max_{s_{-i}}$
- 3. Equivalently, $v_i = \min_{s_{-i}} u_i(s_i^*, s_{-i})$.
- 4. So $v_i = \min_{s_{-i}} u_i(s_i^*, s_{-i}) \le \max_{s_i \le s_{-i}} m_i$
- 5. So $\overline{v}_i \leq v_i \leq \overline{v}_i$.

1. Suppose that $v_i < \overline{v}_i$. But then *i* could guarantee a higher payoff by playing

$$\begin{array}{l} \text{ax } u_{-i}(s_{i}^{*}, s_{-i}).\\ & \text{if } \\ \text{(why?)}\\ \text{in } u_{i}(s_{i}, s_{-i}) = \overline{v}_{i}. \end{array} \qquad \begin{array}{l} \text{Zero-sum game, so}\\ & v_{-i} = -v_{i}\\ & \max_{s_{-i}} u_{i}(s_{i}^{*}, s_{-i}) = \max_{s_{-i}} -u_{i}(s_{i}^{*}, s_{-i})\\ & \max_{s_{-i}} u_{i}(s_{i}^{*}, s_{-i}) = -\min_{s_{-i}} u_{i}(s_{i}^{*}, s_{-i})\\ & \max_{s_{-i}} u_{i}(s_{i}^{*}, s_{-i}) = -\min_{s_{-i}} u_{i}(s_{i}^{*}, s_{-i})\\ & \sum_{s_{-i}} u_{i}(s_{i}^{*}, s_{-i}) = -\max_{s_{-i}} u_{i}(s_{i}^{*}, s_{-i})\\ & \sum_{s_{-i}} u_{i}(s_{i}^{*}, s_{-i}) = -\max_{s_{-i}} u_{i}(s_{i}^{*}, s_{-i})\\ & \sum_{s_{-i}} u_{i}(s_{i}^{*}, s_{-i}) = -\max_{s_{-i}} u_{i}(s_{i}^{*}, s_{-i})\\ & \sum_{s_{-i}} u_{i}(s$$



Minimax Theorem Implications

In any **zero-sum** game:

- 1. Each player's maxmin value is equal to their minmax value. We call this the value of the game.
- 2. For both players, the maxmin strategies and the Nash equilibrium strategies are the same sets.
- 3. Any maxmin strategy profile (a profile in which both agents are playing maxmin strategies) is a Nash equilibrium. Therefore, each player gets the same payoff in every Nash equilibrium (namely, their value for the game).

Corollary: There is no **equilibrium selection** problem.

Dominated Strategies

individual's point of view?

Definition: (domination) Let $s_i, s'_i \in S_i$ be two of player *i*'s strategies. Then S_i strictly dominates S'_i if $\forall S_i \in S_i$: $u_i(S_i, S_i) > u_i(S'_i, S_i)$. 2. s_i weakly dominates s'_i if $\forall s_i \in S_i$: $u_i(s_i, s_i) \ge u_i(s'_i, s_i)$ and $\exists s_{i} \in S_{i} : u_{i}(s_{i}, s_{i}) > u_{i}(s_{i}', s_{i}).$

When can we say that one strategy is **definitely** better than another, from an

- 3. s_i very weakly dominates s'_i if $\forall s_i \in S_i$: $u_i(s_i, s_i) \ge u_i(s'_i, s_i)$.

Dominant Strategies

Definition:

A strategy is (strictly, weakly, very weakly) **dominant** if it (strictly, weakly, very weakly) dominates every other strategy.

Definition:

A strategy is (strictly, weakly, very weakly) **dominated** if is is (strictly, weakly, very weakly) dominated by **some** other strategy.

Definition:

A strategy profile in which every agent plays a (strictly, weakly, very weakly) dominant strategy is an equilibrium in dominant strategies.

Questions:

- 1. Are dominant strategies guaranteed to exist?
- 2. What is the maximum number of **weakly** dominant strategies?
- 3. Is an equilibrium in dominant strategies also a Nash equilibrium?

Prisoner's Dilemma again

Coop. Defect

Coop.	-1,-1	-5,0
Defect	0,-5	-3,-3

- *Defect* is a **strictly dominant** pure strategy in Prisoner's Dilemma.
 - Cooperate is strictly dominated.
- Question: Why would an agent want to play a strictly dominant strategy?
- Question: Why would an agent want to play a strictly dominated strategy?

Battle of the Sofas

Ballet	Soccer	Home
--------	--------	------

Ballet	2,1	0,0	1,0
Soccer	0,0	1,2	0,0
Home	0,0	0,1	1,1

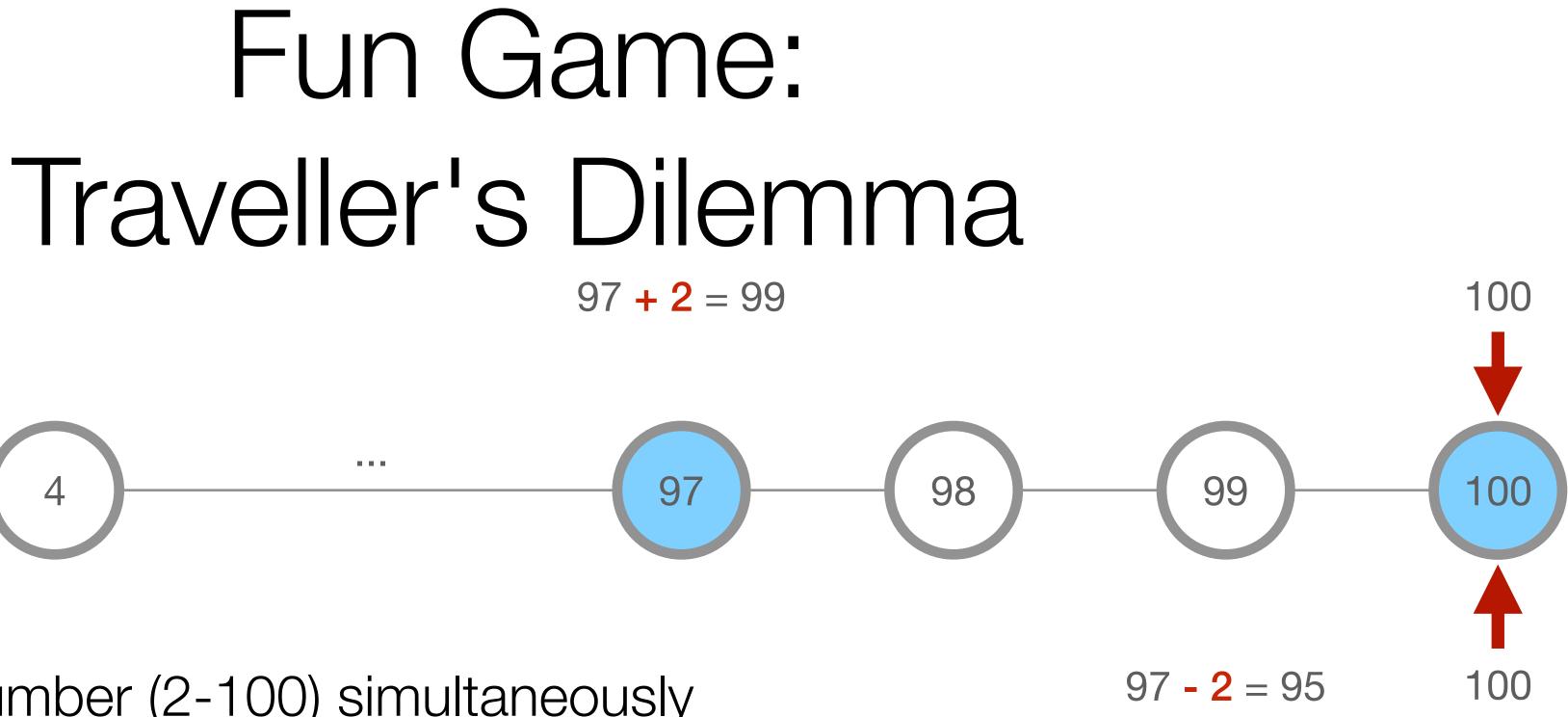
• What are the **dominated** strategies?

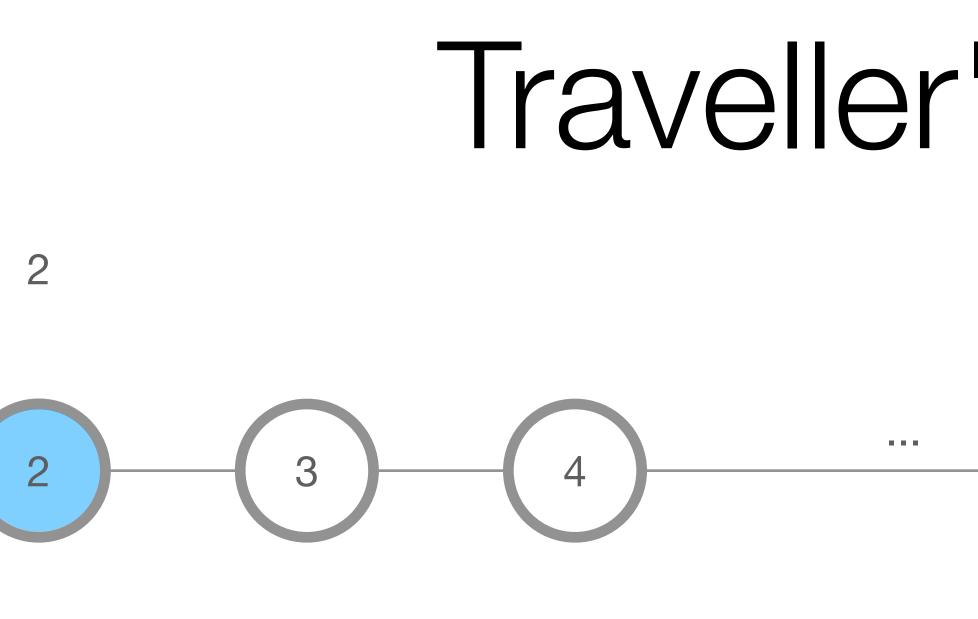
• *Home* is a **weakly dominated** pure strategy in Battle of the Sofas.

 Question: Why would an agent want to play a weakly dominated strategy?

2 3

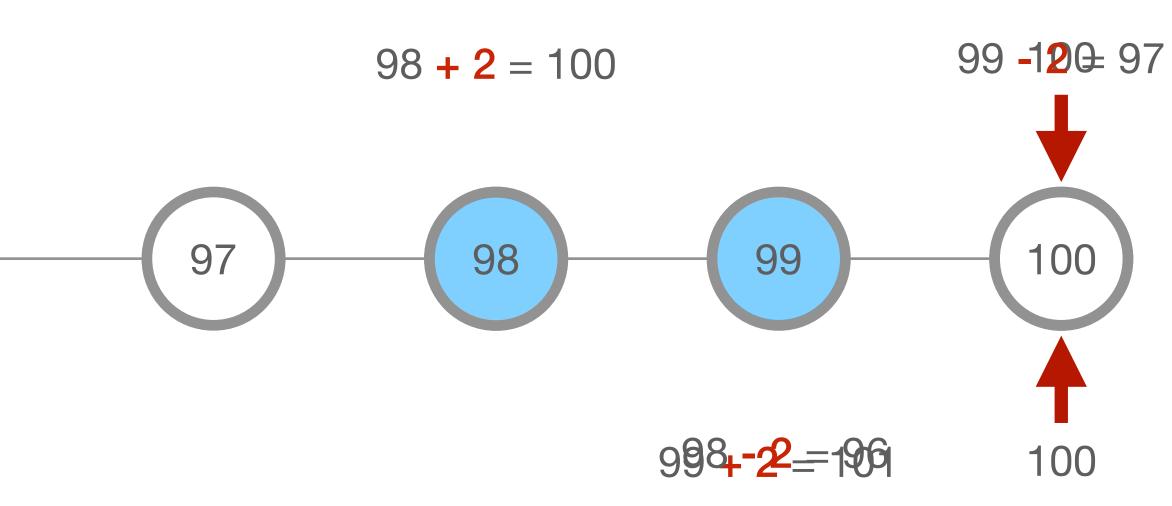
- Two players pick a number (2-100) simultaneously
- If they pick the same number x, then they both get \$x payoff
- If they pick different numbers:
- Player who picked lower number gets lower number, plus bonus of \$2 • Player who picked higher number gets lower number, minus penalty of \$2 • Play against someone near you, three times in total. Keep track of your payoffs!





• Traveller's Dilemma has a unique Nash equilibrium

Traveller's Dilemma



Iterated Removal of Dominated Strategies

- agent.
- \bullet
- You can repeat this process until there are no dominated actions left

• No strictly dominated pure strategy will ever be played by a fully rational

• So we can remove them, and the game remains strategically equivalent

But! Once you've removed a dominated strategy, another strategy that wasn't dominated before might **become dominated** in the new game.

• It's safe to remove this newly-dominated action, because it's never a best response to an action that the opponent would ever play.

Iterated Removal of Dominated Strategies

- Removing strictly dominated strategies preserves all equilibria. (Why?)
- Removing weakly or very weakly dominated strategies may not preserve all A B C equilibria. (Why?) W Removing weakly or very weakly dominated strategies preserves at least X Y one equilibrium. (Why?) But because not all equilibria are necessarily preserved, the order in \bullet
- which strategies are removed can **matter**.

Nash Equilibrium Beliefs

One characterization of Nash equilibrium:

1. Rational behaviour:

Agents maximize expected utility with respect to their beliefs.

Rational expectations:
 Agents have accurate probability other agents.

Agents have accurate probabilistic beliefs about the behaviour of the

Rationalizability

- We saw in the utility theory lecture that rational agents' beliefs need not be objective (or accurate)
- What strategies could possibly be played by:
 - 1. A rational player...
 - 2. ...with common knowledge of the rationality of all players?
- Any strategy that is a best response to some beliefs consistent with these two conditions is rationalizable.

Questions:

- I. What kind of strategy definitely could **not** be played by a rational player with common knowledge of rationality?
- Is a rationalizable strategy guaranteed to exist?
- 3. Can a game have more than one rationalizable strategy?

- In a Nash equilibrium, agents best respond perfectly
- What if they are indifferent to very small gains in utility? •
 - Could reflect modelling error (e.g., unmodelled cost of computational effort)

Definition:

For any $\varepsilon > 0$, a strategy profile s is an ε -Nash equilibrium if, for all agents *i* and strategies $S'_i \neq S_i$,

$$u_i(s_i, s_{-i}) \ge u_i(s_i',$$

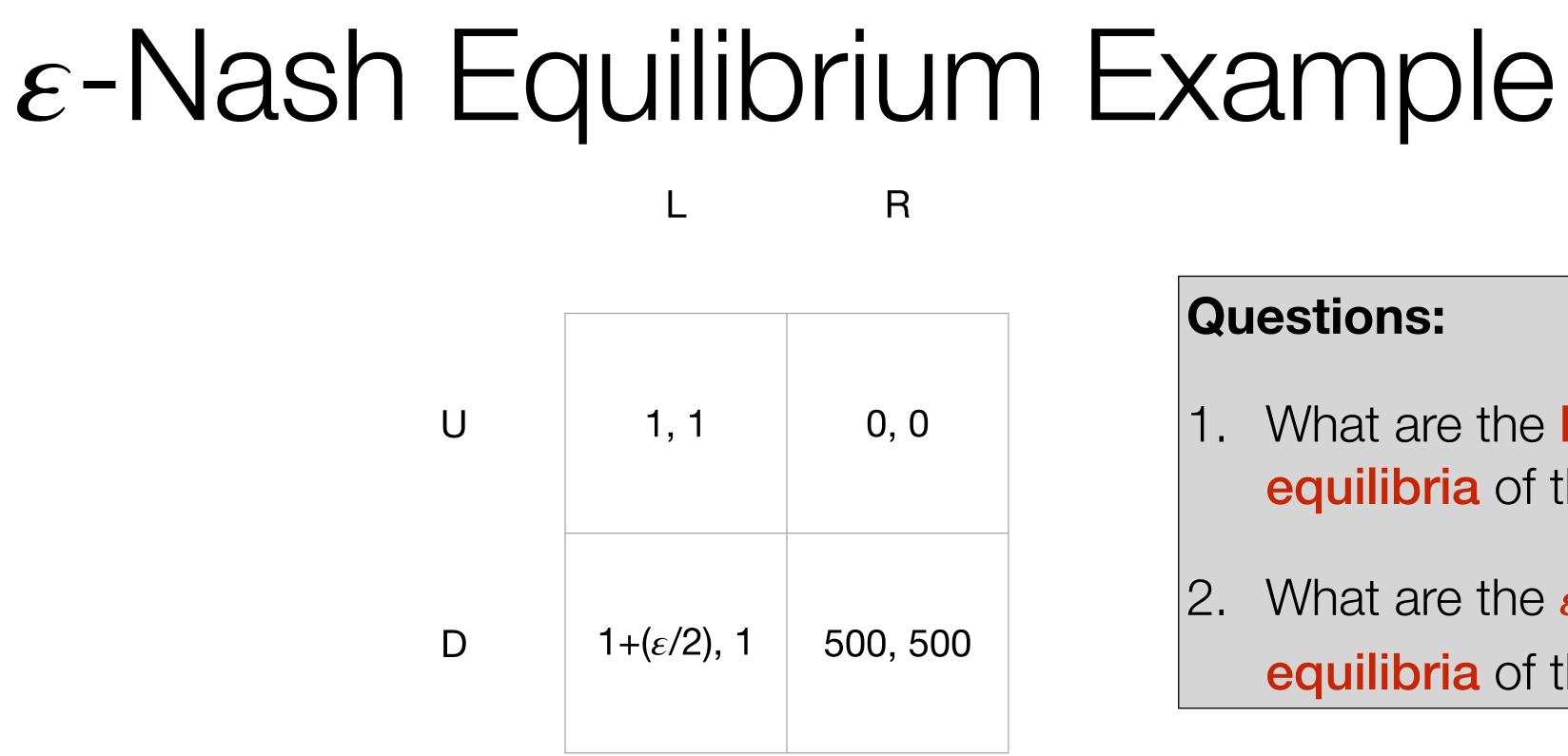
ϵ -Nash Equilibrium

 $S_{-i})-\epsilon$

Questions:

For a given $\epsilon > 0$,

- 1. Is an ε -Nash equilibrium guaranteed to exist?
- 2. Is more than one ε -Nash equilibrium guaranteed to exist?



- Every Nash equilibrium is surrounded by a region of ε -Nash equilibria
 - Every numerical algorithm for computing Nash equilibrium actually computes ε -Nash equilibrium
- However, the reverse is not true! Payoffs from an ϵ -Nash equilibrium can be **arbitrarily far** from Nash equilibrium payoffs.

Questions:

- What are the **Nash** equilibria of this game?
- What are the ε -Nash 2. equilibria of this game?

Correlated Equilibrium Examples

- In the unique mixed strategy equilibrium of Battle of the Sexes, each player gets a utility of 2/3
- If the players could first observe a coin flip, they could coordinate on which pure strategy equilibrium to play
 - Each would get utility of 1.5
 - Fairer than either pure strategy equilibrium, and Pareto dominates the mixed strategy equilibrium
- Correlated equilibrium is a solution concept in which agents get private, potentially-correlated signals before choosing their action
 - In both of these example, each agent sees the same signal perfectly, but that is not necessary in general

	Ballet	Soccer
Ballet	2, 1	0, 0
Soccer	0, 0	1, 2

	Go	Wait	
Go	-10, -10	1, 0	
Wait	0, 1	-1, -1	

Correlated Equilibrium

Definition:

 $d \in D_1 \times \cdots \times D_n$

 $v = (v_1, \dots, v_n)$ is a tuple of random variables with domains (D_1, \dots, D_n) , π is a joint distribution over v, $\sigma = (\sigma_1, \dots, \sigma_n)$ is a vector of mappings σ_n for every agent i and mapping $\sigma': D_i \to A$ $\pi(d)u_i(\sigma_1(d_1),\ldots,\sigma_n(d_n)) \ge 0$

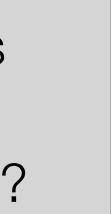
- Given an *n*-agent game G = (N, A, u), a **correlated equilibrium** is a tuple (v, π, σ) , where

$$T_i: D_i \to A_i$$
, and

Question: Why do the σ_i 's map to **pure strategies** instead of mixed strategies?

$$i$$
,

$$\sum_{d \in D_1 \times \cdots \times D_n} \pi(d) u_i(\sigma_1(d_1), \dots, \sigma_i'(d_i), \dots, \sigma_n(d_n))$$



Correlated Equilibrium Properties

Theorem:

For every **Nash equilibrium**, there exists a corresponding correlated equilibrium in which each action profile appears with the same frequency. (**how?**)

Theorem:

Any **convex combination** of correlated equilibrium payoffs can be realized in some correlated equilibrium. (**how?**)

Correlated Equilibrium Another Example

- In our example correlated equilibria, each agent best-responded to the other at every signal
 - This is **not a requirement** of a correlated equilibrium
- Consider this correlated equilibrium, with $D_1 = \{x, y, z\}$ and $D_2 = \{m, r\}$:

- **Question:** Does the column player best-respond at each signal?
- **Question:** What are the marginal probabilities for each player's actions?
- **Question:** What would happen if the agents played **mixed strategies** Z with those marginal probabilities?

Х

/

Y

0,8	3,6	-9,1
0,2	3,9	-12,1(
1,0	0,-2	7,7

Μ

Ballet	2, 1	C
Soccer	0, 0	1

Ballet

-10, -10 Go Wait 0, 1

R

Summary

- Maxmin strategies maximize an agent's guaranteed payoff \bullet
- **Minmax strategies** minimize the other agent's payoff as much as possible
- The **Minimax Theorem**: \bullet
 - Maxmin and minmax strategies are the **only** Nash equilibrium strategies in **zero-sum games** lacksquareEvery Nash equilibrium in a zero-sum game has the **same payoff** \bullet
- **Dominated strategies** can be removed **iteratively** without strategically changing the game (too \bullet much)
- **Rationalizable** strategies are any that are a **best response** to some **rational belief** \bullet
- ϵ -Nash equilibria: stable when agents have no deviation that gains them more than ϵ
- **Correlated equilibria:** stable when agents have signals from a possibly-correlated randomizing device