Game Theory Intro

CMPUT 654: Modelling Human Strategic Behaviour

S&LB §3.2-3.3.3

Recap: Utility Theory

- **Rational preferences** are those that satisfy axioms
- Representation theorems: igodol
 - scalar utility function
 - respect to some probability distribution

 von Neumann & Morgenstern: Any rational preferences over outcomes can be represented by the maximization of the expected value of some

• Savage: Any rational preferences over **acts** can be represented by maximization of the expected value of some scalar utility function with

Lecture Outline

- Recap 1.
- 2. Noncooperative game theory
- 3. Normal form games
- 4. Solution concept: Pareto Optimality
- 5. Solution concept: Nash equilibrium
- Mixed strategies 6.

(Noncooperative) Game Theory

- Utility theory studies rational single-agent behaviour
- Game theory is the mathematical study of interaction between multiple rational, self-interested agents
 - Self-interested: Agents pursue only their own preferences
 - Not the same as "agents are psychopaths"! Their preferences may include the well-being of other agents.
 - Rather, the agents are **autonomous**: they decide on their own priorities independently.

Fun Game: Prisoner's Dilemma

	Cooperate	Defect	
Cooperate	-1,-1	-5,0	
Defect	0,-5	-3,-3	

Two suspects are being questioned separately by the police.

Play the game with someone near you. Then find a new partner and play again. Play 3 times in total, against someone new each time.

• If they both remain silent (cooperate -- i.e., with each other), then they will both be sentenced to 1 year on a lesser charge

• If they both implicate each other (**defect**), then they will both receive a reduced sentence of **3** years

• If one defects and the other cooperates, the defector is given immunity (0 years) and the cooperator serves a full sentence of **5 years**.

Normal Form Games

The Prisoner's Dilemma is an example of a **normal form game**. depending on the profile of actions.

Definition: Finite, *n*-person normal form game

- N is a set of n players, indexed by i
- $A = A_1 \times A_2 \times \ldots \times A_n$ is the set of action profiles
 - A_i is the **action set** for player i
- $u = (u_1, u2, ..., u_n)$ is a **utility function** for each player

•
$$u_i: A \to \mathbb{R}$$

Agents make a single decision **simultaneously**, and then receive a payoff

Normal Form Games as a Matrix

Defect

Lying

- Two-player normal form games can be written as a matrix with a tuple of utilities in each cell
- By convention, row player is first utility, column player is second
- Three-player normal form games can be written as a set of matrices, where the third player chooses the matrix

Games of Pure Competition (Zero-Sum Games)

Players have exactly opposed interests

- There must be precisely **two** players
 - Otherwise their interests can't be exactly opposed
- $u_1(a) + u_2(a) = c$ for all action profiles $a \in A$
 - c = 0 without loss of generality (**why?**)
- In a sense it's a **one-player game**
 - Only need to store a single number per cell
 - But also in a deeper sense, by the Minimax Theorem

Example: Matching Pennies

Row player wants to match, column player wants to mismatch

Heads

Play against someone near you. Repeat 3 times.

s Tails

Games of Pure Cooperation

Players have exactly the same interests.

- $u_i(a) = u_i(a)$ for all $i, j \in N$ and $a \in A$
- Can also write these games with one payoff per cell

Question: In what sense are these games **non-cooperative**?

Example Coordination Game

Which side of the road should you drive on?

Play against someone near you. Play 3 times in total, playing against someone new each time.

Right

General Game: Battle of the Sexes

Play against someone near you. Play 3 times in total, playing against someone new each time.

The most interesting games are simultaneously both cooperative and competitive!

> Soccer 0, 0 1, 2

Optimal Decisions in Games

- In single-agent decision theory, the key notion is
 optimal decision: a decision that maximizes the agent's expected utility
- In a multiagent setting, the notion of optimal strategy is incoherent
 - The best strategy depends on the strategies of others

- From the viewpoint of an **outside observer**, can some outcomes of a game be labelled as **better** than others?
 - We have no way of saying one agent's interests are more important than another's
 - We can't even **compare** the agents' utilities to each other, because of affine invariance! We don't know what "units" the payoffs are being expressed in.
- Game theorists identify certain subsets of outcomes that are interesting in one sense or another. These are called solution concepts.

Solution Concepts

Pareto Optimality

- Sometimes, some outcome o is at least as good for any agent as outcome o', and there is some agent who strictly prefers o to o'.
 - *Example:* o' = "Everyone gets pie", vs. o = "Everyone gets pie and also Alice gets cake" • In this case, o seems defensibly better than o'

Definition: *o* **Pareto dominates** *o'* when $o \geq_i o'$ for all $i \in N$ and $o \succ_i o'$ for some $i \in N$. **Definition:**

Questions:

- 1. Can a game have more than one Pareto-optimal outcome?
- Does every game have 2. at least one Paretooptimal outcome?

An outcome o^* is **Pareto optimal** if no other outcome Pareto dominates it.

Pareto Optimality Examples

Definition: o **Pareto dominates** o' when $o \geq_i o'$ for **all** $i \in N$ and $o \succ_i o'$ for **some** $i \in N$. **Definition:** An outcome o^* is **Pareto optimal** if no other outcome Pareto dominates it.

Does $\begin{bmatrix} 9\\ 8\\ 7 \end{bmatrix}$ Pareto-dominate $\begin{bmatrix} 1\\ 1\\ 8 \end{bmatrix}$? Out of $\left\{ \begin{bmatrix} 9\\ 8\\ 7 \end{bmatrix}, \begin{bmatrix} 8\\ 8\\ 7 \end{bmatrix}, \begin{bmatrix} 1\\ 4\\ 7 \end{bmatrix}, \begin{bmatrix} 1\\ 4\\ 4 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 8\\ 3 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 8\\ 8 \end{bmatrix} \right\}$ which outcomes are Pareto-optimal?

Best Response

- Which actions are better from an individual agent's viewpoint?
- That depends on what the other agents are doing! Notation:

 $a_{-i} \doteq (a_1, a_2)$ a =

Definition:

$$BR_i(a_{-i}) \doteq \{a_i^* \in A_i \mid u_i(a^*, a_{-i}) \ge u_i(a_i, a_{-i}) \ \forall a_i \in A_i\}$$

is the set of agent *i*'s pure best responses to a_{i} .

$$a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_n)$$

= (a_i, a_{-i})

Nash Equilibrium

- Best response is not, in itself, a solution concept
 - In general, agents won't know what the other agents will do
 - But we can use it to define a solution concept
- A Nash equilibrium is a **stable** outcome: one where no agent regrets their actions

Definition:

An action profile $a \in A$ is a (pure strategy) **Nash equilibrium** iff

$$\forall i \in N : a_i \in BR_{-i}$$

Questions:

- Can a game have more than one pure strategy Nash equilibrium?
- 2. Does every game have at least one pure strategy Nash equilibrium?

Nash Equilibria of Examples

Coop. Defect

The only equilibrium
of Prisoner's Dilemma
is also the only outcome
that is Pareto-dominated!Coop.-1,-1-5,0Defect0,-5-3,-3

Ballet Soccer

Ballet	2, 1	0, 0
Soccer	0, 0	1, 2

	Left	Right
Left	1	-1
Right	-1	1

Heads	Tails
-------	-------

Heads	1,-1	-1,1
Tails	-1,1	1,-1

Mixed Strategies

- So far, we have been assuming that agents play a single action deterministically
 - But that's a pretty bad idea in, e.g., Matching Pennies

Definition:

- A strategy S_i for agent *i* is any probability distribution over the set A_i , where each action a_i is played with probability $s_i(a_i)$.
 - Pure strategy: only a single action is played
 - Mixed strategy: randomize over multiple actions
- Set of *i*'s strategies: $S_i \doteq \Delta(A_i)$
- Set of strategy profiles: $S \doteq S_1 \times \ldots \times S_n$

Utility Under Mixed Strategies

The utility under a mixed strategy profile is **expected utility** (**why?**)

- Because we assume agents are decision-theoretically rational
- We assume that the agents randomize **independently**

Definition:

For any mixed strategy profile s,

$$u_i(s) = \sum_{a \in A} \Pr(a \mid s) u_i(a),$$

where Pr(a)

$$|s) = \prod_{j \in N} s_j(a_j).$$

Best Response and Nash Equilibrium

Definition:

The set of *i*'s **best responses** to a strategy profile $S_{i} \in S_{i}$ is

$$BR_i(s_{-i}) \doteq \{s_i^* \in S \mid u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i}) \ \forall s_i \in S_i\}$$

Definition:

A strategy profile $s \in S$ is a Nash equilibrium iff

 $\forall i \in N$:

$$s_i \in BR_{-i}(s_{-i})$$

• When at least one s_i is mixed, s is a mixed strategy Nash equilibrium

• When every s_i is deterministic, s is a pure strategy Nash equilibrium

Theorem: [Nash 1951] Nash equilibrium.

Proof idea:

- Brouwer's fixed-point theorem guarantees that any continuous function 1. from a simpletope to itself has a fixed point.
- 2. Construct a continuous function $f: S \to S$ whose fixed points are all Nash equilibria.
 - NB: A simpletope is a product of simplices, so S is a simpletope

Nash's Theorem

Every game with a finite number of players and action profiles has at least one

Interpreting Mixed Strategy Nash Equilibrium

What does it even mean to say that agents are playing a mixed strategy Nash equilibrium?

- They truly are **sampling a distribution** in their heads, perhaps to **confuse** their opponents (e.g., soccer, other zero-sum games)
- The distribution represents the **other agents' uncertainty** about what the agent will do
- The distribution is the empirical frequency of actions in repeated play
- The distribution is the frequency of a pure strategy in a **population** of pure strategies (i.e., every individual plays a pure strategy)

Summary

- Game theory studies the interactions of rational agents \bullet Canonical representation is the normal form game
- Game theory uses **solution concepts** rather than optimal behaviour \bullet
 - "Optimal behaviour" is not clear-cut in multiagent settings
 - **Pareto optimal:** no agent can be made better off without making some other agent worse off
 - **Nash equilibrium:** no agent regrets their strategy given the choice of lacksquarethe other agents' strategies