Utility Theory

CMPUT 654: Modelling Human Strategic Behaviour

S&LB §3.1

Recap: Course Essentials

jrwright.info/bgtcourse/

- This is the main source for information about the class
- Slides, readings, deadlines

<u>eClass</u>

- This is where assignments are posted and handed in
- There is also a class forum for questions and discussions about course material

Utility, informally

A utility function is a real-valued function that indicates how much an agent **prefers** an outcome.

Rational agents act to maximize their expected utility.

Nontrivial claim:

- 1. Why should we believe that an agent's preferences can be adequately represented by a **single number**?
- 2. Why should agents maximize **expected value** rather than some other criterion?

Von-Neumann and Morgenstern's Theorem shows when these are true.

Outline

- 1. Informal statement
- 2. Theorem statement (von Neumann & Morgenstern)
- 3. Proof sketch
- 4. Fun game!
- 5. Representation theorem (Savage)

Formal Setting: Outcome

Definition: Let O be a set of outcomes:

$$O = Z \cup \Delta(O)$$

where Z is some set of "actual outcomes", and

Not a typo!

 $\Delta(X)$ represents the set of **lotteries** over **finite** subsets of X:

$$[p_1: x_1, ..., p_k: x_k]$$

with
$$\sum_{j=1}^{k} p_j = 1$$
 and $x_j \in X \ \forall 1 \leq j \leq k$

Formal Setting: Preference Relation

A preference relation is a relationship between outcomes.

Definition

For a specific **preference relation ≥**, write:

- 1. $o_1 \ge o_2$ if the agent weakly prefers o_1 to o_2 ,
- 2. $o_1 > o_2$ if the agent strictly prefers o_1 to o_2 ,
- 3. $o_1 \sim o_2$ if the agent is **indifferent** between o_1 and o_2 .

Formal Setting

Definition

A utility function is a function $u:O\to\mathbb{R}$. A utility function represents a preference relation \succeq iff:

1.
$$o_1 \ge o_2 \iff u(o_1) \ge u(o_2)$$
, and

2.
$$u([p_1:o_1,...,p_k:o_k]) = \sum_{j=1}^k p_j u(o_j).$$

Representation Theorem

Theorem: [von Neumann & Morgenstern, 1944]

Suppose that a preference relation ≥ satisfies the axioms Completeness, Transitivity, Monotonicity, Substitutability, Decomposability, and Continuity.

Then there exists a function $u:O\to\mathbb{R}$ such that

1.
$$o_1 \ge o_2 \iff u(o_1) \ge u(o_2)$$
, and

2.
$$u([p_1:o_1,...,p_k:o_k]) = \sum_{j=1}^k p_j u(o_j).$$

That is, there exists a utility function that represents \geq .

Completeness and Transitivity

Definition (Completeness):

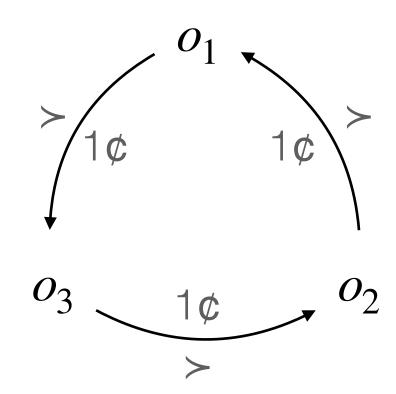
$$\forall o_1, o_2 : (o_1 > o_2) \lor (o_1 < o_2) \lor (o_1 < o_2)$$

Definition (Transitivity):

$$\forall o_1, o_2 : (o_1 \geq o_2) \land (o_2 \geq o_3) \implies o_1 \geq o_3$$

Question: Should we buy these axioms?

Transitivity Justification: Money Pump



- Suppose that $(o_1 > o_2)$ and $(o_2 > o_3)$ and $(o_3 > o_1)$.
- Starting from o_3 , you are willing to pay 1¢ (say) to switch to o_2
- But from o_2 , you should be willing to pay 1¢ to switch to o_1
- But from o_1 , you should be willing to pay 1¢ to switch back to o_3 again...

Monotonicity

Definition (Monotonicity):

If $o_1 > o_2$ and p > q, then

$$[p:o_1,(1-p):o_2] > [q:o_1,(1-q):o_2].$$

You should prefer a 90% chance of getting \$1000 to a 50% chance of getting \$1000.

Questions:

- 1. Does this axiom depend on the agent's risk attitudes?
- 2. Must this be true of all rational preferences?

Substitutability

Definition (Substitutability):

If $o_1 \sim o_2$, then for all sequences o_3, \ldots, o_k and p, p_3, \ldots, p_k with

$$p + \sum_{j=3}^{k} p_j = 1,$$

$$[p:o_1, p_3:o_3, ..., p_k:o_k] \sim [p:o_2, p_3:o_3, ..., p_k:o_k]$$

If I like apples and bananas equally, then I should be indifferent between a 30% chance of getting an apple and a 30% chance of getting a banana.

Question: Should we buy this axiom?

Decomposability aka "No Fun in Gambling"

Definition (Decomposability):

Let $P_{\mathscr{C}}(o)$ denote the probability that lottery \mathscr{C} selects outcome o.

If
$$P_{\ell_1}(o_j) = P_{\ell_2}(o_j) \ \forall o_j \in O$$
, then $\ell_1 \sim \ell_2$.

Example:

Let
$$\mathcal{E}_1 = [0.5 : [0.5 : o_1, 0.5 : o_2], 0.5 : o_3]$$

Let $\mathcal{E}_2 = [0.25 : o_1, 0.25 : o_2, 0.5 : o_3]$

Then $\ell_1 \sim \ell_2$, because

$$P_{\ell_1}(o_1) = 0.5 \times 0.5 = 0.25$$
 $= P_{\ell_2}(o_1)$
 $P_{\ell_1}(o_2) = 0.5 \times 0.5 = 0.25$ $= P_{\ell_2}(o_2)$
 $P_{\ell_1}(o_3) = 0.5$ $= P_{\ell_2}(o_3)$

Continuity

Definition (Continuity):

If $o_1 > o_2 > o_3$, then $\exists p \in [0,1]$ such that

$$o_2 \sim [p:o_1, (1-p):o_3]$$

Proof Sketch: Construct the utility function

- 1. If \geq satisfies Completeness, Transitivity, Monotonicity, Decomposability, then for every $o_1 > o_2 > o_3$, there exists some p such that:
 - (a) $o_2 > [q:o_1, (1-q):o_3] \forall q < p$, and
 - (b) $o_2 < [q:o_1, (1-q):o_3] \forall q > p$.
- 2. If \geq additionally satisfies Continuity, then

$$\exists p : o_2 \sim [p : o_1, (1-p) : o_3].$$

Question: Are o^+ and o^- guaranteed to exist?

- 3. Choose maximal $o^+ \in O$ and minimal $o^- \in O$.
- 4. Construct u(o) = p such that $o \sim [p : o^+, (1 p) : o^-]$.

Proof sketch: Check the properties

1.
$$o_1 \ge o_2 \iff u(o_1) \ge u(o_2)$$

$$u(o) = p \text{ such that } o \sim [p:o^+, (1-p):o^-].$$

Proof sketch: Check the properties

2.
$$u([p_1 : o_1, ..., p_k : o_k]) = \sum_{j=1}^k p_j u(o_j)$$

- Let $u^* = u([p_1 : o_1, ..., p_k : o_k])$
- (ii) Replace o_i with $\ell_i = [u(o_i) : o^+, (1 u(o_i)) : o^-]$, giving $[p_1:\ell_1,...,p_k:\ell_k] = [p_1:[u(o_1):o^+,(1-u(o_1)):o^-],...,p_k:[u(o_k):o^+,(1-u(o_k)):o^-]]$

 $u([p_1 : \ell_1, ..., p_k : \ell_k]) = u^*$

- (iii) Question: What is $u([p_1:\ell_1,...,p_k:\ell_k])$?

(iv) **Question:** What is the probability of getting
$$o^+$$
 in $[p_1:\ell_1,...,p_k:\ell_k]$?
$$\sum_{j=1}^k \left(p_j \times u(o_j)\right)$$
 (v) Construct $\ell^* = \left[\sum_{j=1}^k \left(p_j \times u(o_j)\right) : o^+, \left(1 - \sum_{j=1}^k \left(p_j \times u(o_j)\right)\right) : o^-\right]$ $u(\ell^*) = \sum_{j=1}^k \left(p_j \times u(o_j)\right)$

(vi) Observe that
$$[p_1:\ell_1,...,p_k:\ell_k] \sim \ell^*$$
 (why?) $u([p_1:\ell_1,...,p_k:\ell_k]) = u^* = u(\ell^*) = \sum_{i=1}^k \left(p_i \times u(o_i)\right)$

Caveats & Details

Utility functions are not uniquely defined. (Why?)

• Invariant to affine transformations (i.e., m > 0):

$$\mathbb{E}[u(X)] \ge \mathbb{E}[u(Y)] \iff X \ge Y$$

$$\iff \mathbb{E}[mu(X) + b] \ge \mathbb{E}[mu(Y) + b] \iff X \ge Y$$

This means we're not stuck with a range of [0,1]!

Caveats & Details

The proof depended on minimal and maximal elements of O, but that is not critical.

Construction for unbounded outcomes/preferences:

1. Pick two outcomes $o_s \prec o_e$. Construct utility for all outcomes $o_s \leq o \leq o_e$:

$$u: \{o \in O \mid o_s \le o \le o_e\} \to [0,1]$$

- 2. For outcomes o' outside that range, choose $o_{s'} < o' < o_s < o_e < o_{e'}$.
- 3. Construct utility $u': \{o \in O \mid o_{s'} \le o \le o_{e'}\} \to [0,1]$.
- 4. Find m>0 and $b\in\mathbb{R}$ such that $mu'(o_s)+b=u(o_s)$ and $mu'(o_e)+b=u(o_e)$.
- 5. Let u(o) = mu'(o) + b for all $o \in \{o' \in O \mid o_{s'} \le o' \le o_{e'}\}$.

Fun game: Buying lottery tickets

Write down the following numbers:

- 1. How much would you pay for the lottery [0.3:\$5, 0.3:\$7, 0.4:\$9]?
- 2. How much would you pay for the lottery [p:\$5, q:\$7, (1 p q):\$9]?
- 3. How much would you pay for the lottery [*p* : \$5, *q* : \$7, (1 *p q*) : \$9] if you knew the last seven draws had been 5,5,7,5,9,9,5?

Beyond von Neumann & Morgenstern

- The first step of the fun game was a good match to the utility theory we just learned.
 - Question: If two agents have different prices for [0.3:\$5, 0.3:\$7, 0.4:\$9], what does that say about their utility functions for money?
- The second and third steps, not so much!
 - **Question:** If two agents have different prices for [p:\$5, q:\$7, (1-p-q):\$9], what does that say about their **utility functions**?
 - What if two people have the same prices for step 2 but different prices once they hear what the last few draws were?

Another Formal Setting

- States: Set S of elements s, s', \ldots with subsets A, B, C, \ldots
- Consequences: Set F of elements f, g, h, \dots
- Acts: Arbitrary functions $\mathbf{f}: S \to F$
- Preference relation ≥ between acts
- $(\mathbf{f} \succeq \mathbf{g} \text{ given } B) \iff$
 - $\mathbf{f}' \succeq \mathbf{g}'$ for every \mathbf{f}', \mathbf{g}' that agree with \mathbf{f}, \mathbf{g} respectively on B and each other on \overline{B}

Another Representation Theorem

Theorem: [Savage, 1954]

Suppose that a preference relation ≥ satisfies postulates P1-P6.

Then there exists a utility function U and a probability measure P such that

$$\mathbf{f} \succeq \mathbf{g} \iff \sum_{i} P[B_i] U[f_i] \geq \sum_{i} P[B_i] U[g_i].$$

Postulates

- P1 ≥ is a simple order
- P2 $\forall \mathbf{f}, \mathbf{g}, B : (\mathbf{f} \geq \mathbf{g} \text{ given } B) \lor (\mathbf{g} \geq \mathbf{f} \text{ given } B)$
- P3 $(\mathbf{f}(s) = g \land \mathbf{f}'(s) = g' \ \forall s \in B) \implies (\mathbf{f} \succeq \mathbf{f}' \text{ given } B \iff g \succeq g')$
- **P4** For every A, B, either $A \leq B$ or $B \leq A$ (see D4)
- **P5** It is false that for every $f, f', f \geq f'$.
- For all $\mathbf{g} > \mathbf{h}$ and consequence f, there exists a partition of S such that the consequence of either \mathbf{g} or \mathbf{h} can be replaced by f without changing the ordering of the two acts.

Summary

- Using very simple axioms about **preferences over lotteries**, utility theory proves that rational agents ought to act **as if** they were maximizing the **expected value** of a real-valued function.
 - Rational agents are those whose behaviour satisfies a certain set of axioms
 - If you don't buy the axioms, then you shouldn't buy that this theorem is about rational behaviour
- Can extend beyond this to "subjective" probabilities, using axioms about **preferences over uncertain "acts"** that do not describe how agents manipulate probabilities.