Mechanism Design

CMPUT 654: Modelling Human Strategic Behaviour

S&LB §10.1-10.2

Logistics

- Assignment #2 will be released on Thursday
- See the <u>course schedule</u> for paper presentation assignments
- Assignment #1 is about half-marked; should have results by the end of the week
- I will email solutions to Assignment #1 when it is marked;
 please do not share the solutions with anyone outside the class

Recap: Social Choice

Definition: A social choice function is a function $C:L^n\to O$, where

- $N = \{1, 2, ..., n\}$ is a set of **agents**
- O is a finite set of outcomes
- L is the set of (non-strict) total orderings over O.

Definition: A social welfare function is a function $C:L^n\to L$, where N,O, and L are as above.

Notation:

We will denote i's preference order as $\geq_i \in L$, and a profile of preference orders as $[\geq] \in L^n$.

Recap: Voting Scheme Properties

Definition:

W is Pareto efficient if for any $o_1, o_2 \in O$,

$$(\forall i \in N : o_1 \succ_i o_2) \implies (o_1 \succ_W o_2).$$

Definition:

W is independent of irrelevant alternatives if, for any $o_1, o_2 \in O$ and any two preference profiles $[\succ'], [\succ''] \in L$,

$$(\forall i \in N : o_1 \succ_i' o_2 \iff o_1 \succ_i'' o_2) \implies (o_1 \succ_{W[\succ']} o_2 \iff o_1 \succ_{W[\succ'']} o_2).$$

Definition:

W does not have a dictator if

$$\neg i \in N : \forall [>] \in L^n : \forall o_1, o_2 \in O : (o_1 >_i o_2) \implies (o_1 >_W o_2).$$

Recap: Arrow's Theorem

Theorem: (Arrow, 1951)

If |O| > 2, any social welfare function that is Pareto efficient and independent of irrelevant alternatives is dictatorial.

• Unfortunately, restricting to social choice functions instead of full social welfare functions doesn't help.

Theorem: (Muller-Satterthwaite, 1977)

If |O| > 2, any social choice function that is weakly Pareto efficient and monotonic is dictatorial.

Lecture Outline

- 1. Recap & Logistics
- 2. Mechanism Design with Unrestricted Preferences
- 3. Quasilinear Preferences

Mechanism Design

- In the social choice lecture, we assumed that agents report their preferences truthfully
- We now allow agents to report their preferences strategically
- Which social choice functions are implementable in this new setting?
 - Question: Wait, didn't we prove that social choice was hopeless?

Bayesian Game Setting

Definition:

A Bayesian game setting is a tuple (N, O, Θ, p, u) where

- N is a finite set of n agents,
- O is a set of outcomes,
- $\Theta = \Theta_1 \times \cdots \times \Theta_n$ is a set of possible type profiles,
- p is a common prior distribution over Θ , and
- $u = (u_1, ..., u_n)$, where $u_i : O \to \mathbb{R}$ is the **utility function** for player i.

This differs from a Bayesian game only in that utilities are defined on **outcomes** rather than **actions**, and agents are not (yet) endowed with an action set.

Mechanism

Definition:

A mechanism for a Bayesian game setting (N, O, Θ, p, u) is a pair (A, M), where

- $A = A_1 \times \cdots A_n$, where A_i is the set of **actions** available to agent i, and
- $M:A \to \Delta(O)$ maps each action profile to a distribution over outcomes

Intuitively, a mechanism designer (sometimes called **The Center**) needs to decide among outcomes in some Bayesian game setting, and so they design a mechanism that **implements** some social choice function.

Dominant Strategy Implementation

Definition:

Given a Bayesian game setting (N, O, Θ, p, u) , a mechanism (A, M) is an **implementation in dominant strategies** of a social choice function C (over N and O) if,

- 1. The Bayesian game $(N, A, \Theta, p, u \circ M)$ induced by (A, M) has an equilibrium in dominant strategies, and
- 2. In any such equilibrium s^* , and for any type profile $\theta \in \Theta$, we have $M(s^*(\theta)) = C(u(\cdot, \theta))$.

Bayes-Nash Implementation

Definition:

Given a Bayesian game setting (N, O, Θ, p, u) , a mechanism (A, M) is an **implementation in Bayes-Nash equilibrium** of a social choice function C (over N and O) if

- 1. There exists a Bayes-Nash equilibrium of the Bayesian game $(N, A, \Theta, p, u \circ M)$ induced by (A, M) such that
- 2. for every type profile $\theta \in \Theta$ and action profile $a \in A$ that can arise in equilibrium, $M(a) = C(u(\cdot, \theta))$.

The Space of All Mechanisms Is Enormous

- The space of all functions that map actions to outcomes is impossibly large to reason about
- Question: How could we ever prove that a given social choice function is **not implementable**?
- Fortunately, we can restrict ourselves without loss of generality to the class of truthful, direct mechanisms

Direct Mechanisms

Definition: A direct mechanism is one in which $A_i = \Theta_i$ for all agents $i \in N$.

Definition:

A direct mechanism is **truthful** (or **incentive compatible**) if, for all type profiles $\theta \in \Theta$, it is a dominant strategy in the game induced by the mechanism for each agent to report their true type.

Definition:

A direct mechanism is **Bayes-Nash incentive compatible** if there exists a Bayes-Nash equilibrium of the induced game in which every agent always truthfully reports their type.

Revelation Principle

Theorem: (Revelation Principle)

If there exists any mechanism that implements a social choice function ${\it C}$ in dominant strategies, then there exists a direct mechanism that implements ${\it C}$ in dominant strategies and is truthful.

Identical result for implementation in Bayes-Nash equilibrium

Revelation Principle Proof

- 1. Let (A, M) be an **arbitrary mechanism** that implements C in Bayesian game setting (N, O, Θ, p, u) .
- 2. Construct the revelation mechanism (Θ, \overline{M}) as follows:
 - For each type profile $\theta \in \Theta$, let $a^*(\theta)$ be the action profile in which every agent plays their dominant strategy in the game induced by (A, M).
 - Define $\overline{M}(\theta) = M(a^*(\theta))$.
- 3. Each agent reporting type $\hat{\theta}_i$ will yield the same outcome as every agent of type $\hat{\theta}_i$ playing their dominant strategy in M
- 4. So it is a dominant strategy for each agent to report their true type $\hat{\theta}_i = \theta_i$.

Revelation Mechanism

(Image: Shoham & Leyton-Brown 2008)

General Dominant-Strategy Implementation

Theorem: (Gibbard-Satterthwaite)

Consider any social choice function C over N and O. If |O|>2 (there are at least **three** outcomes),

- 1. C is **onto**; that is, for every outcome $o \in O$ there is a preference profile $[\succ]$ such that $C([\succ]) = o$ (this is sometimes called **citizen sovereignty**), and
- 2. C is dominant-strategy truthful,

then C is dictatorial.

Hold On A Second

Haven't we already seen an example of a dominant-strategy truthful direct mechanism?

Second Price Auction

- Outcomes are $O = \{(i \text{ gets object, pays } \$x) \mid i \in N, x \in \mathbb{R}\}$
- Types are $\theta_i = \mathbb{R}$, where an agent i with type $x \in \mathbb{R}$ has preferences: $(i \text{ gets object, pays } \$y') \succ_i (i \text{ gets object, pays } \$y'')$ for all y' < y'' and y' < x, $(i \text{ gets object, pays } \$y'') \succ_i (j \text{ gets object, pays } \$y'')$ for all y' < x and $i \neq j$, $(j \text{ gets object, pays } \$y'') \succ_i (i \text{ gets object, pays } \$y')$ for all y' > x and $i \neq j$.
- Social choice function: Assign the item to the agent with the highest type
- Actions: Agents directly announce their type via sealed bid
- Question: Why is this not ruled out by Gibbard-Satterthwaite?

Restricted Preferences

- Gibbard-Satterthwaite only applies to social choice functions that operate on every possible preference ordering over the outcomes
- By restricting the set of preferences that we operate over, we can circumvent Gibbard-Satterthwaite

Quasilinear Preferences

Definition:

Agents have quasilinear preferences in an n-player Bayesian game setting when

- 1. the set of outcomes is $O = X \times \mathbb{R}^n$ for a finite set X,
- 2. the utility of agent i given type profile θ for an element $(x,p) \in O$ is $u_i((x,p),\theta) = v_i(x,\theta) f_i(p_i)$, where
- 3. $v_i: X \times \Theta \to \mathbb{R}$ is an **arbitrary** function, and
- 4. $f_i: \mathbb{R} \to \mathbb{R}$ is a monotonically increasing function.

Quasilinear Preferences, informally

- Intuitively: Agents' preferences are split into
 - 1. finite set of nonmonetary outcomes (e.g., allocation of an object)
 - 2. monetary payment made to The Center (possibly negative)
- These two preferences are linearly related
- Agents are permitted arbitrary preferences over nonmonetary outcomes, but not over payments
- Agents care only about the outcome selected and their own payment
 - and, the amount they care about the outcome is independent of their payment

Direct Quasilinear Mechanism

Definition:

A direct quasilinear mechanism is a pair (χ, p) , where

- $\chi: \Theta \to \Delta(X)$ is the **choice rule** (often called the **allocation rule**), which maps from a profile of reported types to a distribution over nonmonetary outcomes, and
- $p: \Theta \to \mathbb{R}^n$ is the **payment rule**, which maps from a profile of reported types to a payment for each agent.

Summary

- Mechanism design: Setting up a system for strategic agents to provide input to a social choice function
- Revelation Principle means we can restrict ourselves to truthful direct mechanisms without loss of generality
- Non-dictatorial dominant-strategy mechanism design is impossible in general (Gibbard-Satterthwaite)
- The special case of quasi-linear preferences will allow us to circumvent Gibbard-Satterthwaite (next time!)