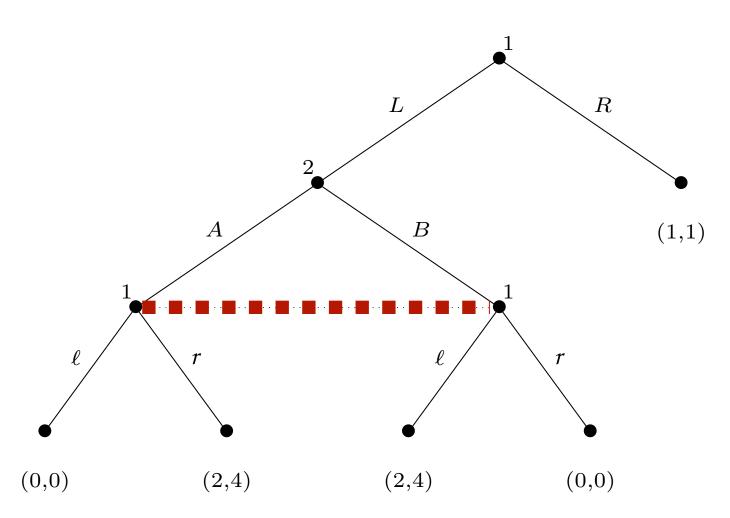
Repeated Games

CMPUT 654: Modelling Human Strategic Behaviour

S&LB §6.1

Recap: Imperfect Information Extensive Form Example



- We represent sequential play using extensive form games
- In an **imperfect information** extensive form game, we represent private knowledge by grouping histories into **information sets**
- Players cannot distinguish which history they are in within an information set

Recap: Behavioural vs. Mixed Strategies

Definition:

A mixed strategy $s_i \in \Delta(A^{I_i})$ is any distribution over an agent's pure strategies.

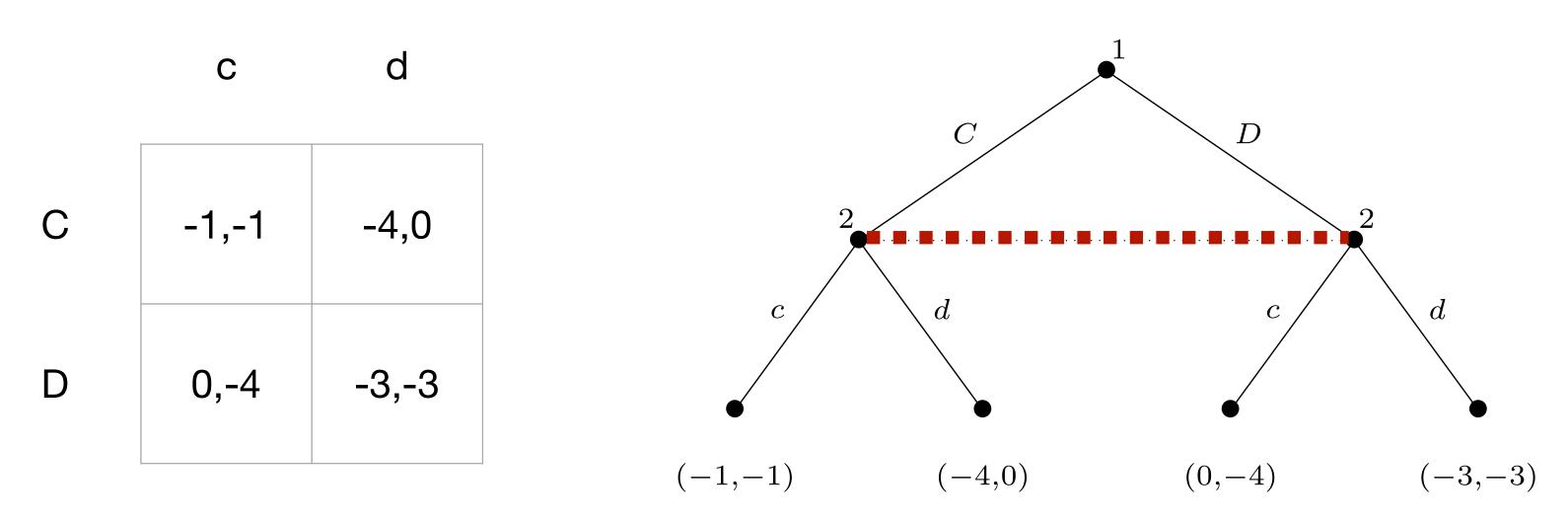
Definition:

A behavioural strategy $b_i \in [\Delta(A)]^{I_i}$ is a probability distribution over an agent's actions at an **information set**, which is **sampled independently** each time the agent arrives at the information set.

Kuhn's Theorem:

These are equivalent in games of perfect recall.

Recap: Normal to Extensive Form



Unlike perfect information games, we can go in the opposite direction and represent any normal form game as an imperfect information extensive form game

Lecture Outline

- 1. Recap
- 2. Repeated Games
- 3. Infinitely Repeated Games
- 4. The Folk Theorem

Repeated Game

- Some situations are well-modelled as the **same agents** playing a normal-form game **multiple times**.
 - The normal-form game is the **stage game**; the whole game of playing the stage game repeatedly is a **repeated game**.
 - The stage game can be repeated a finite or an infinite number of times.
- Questions to consider:
 - 1. What do agents observe?
 - 2. What do agents remember?
 - 3. What is the agents' utility for the whole repeated game?

Finitely Repeated Game

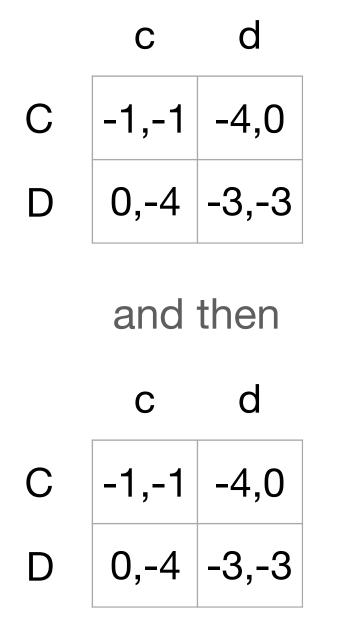
Suppose that n players play a normal form game against each other $k \in \mathbb{N}$ times.

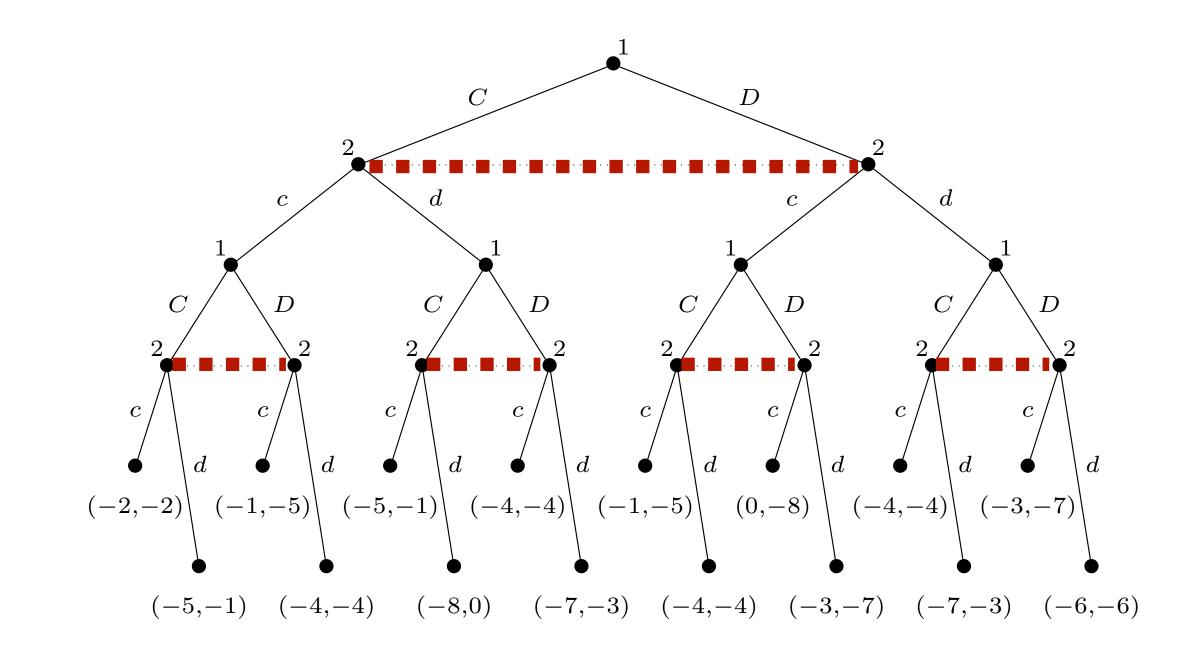
Questions:

- 1. Do they observe the other players' actions? If so, when?
- 2. Do they remember what happened in the previous games?
- 3. What is the utility for the whole game?
- 4. What are the pure strategies?

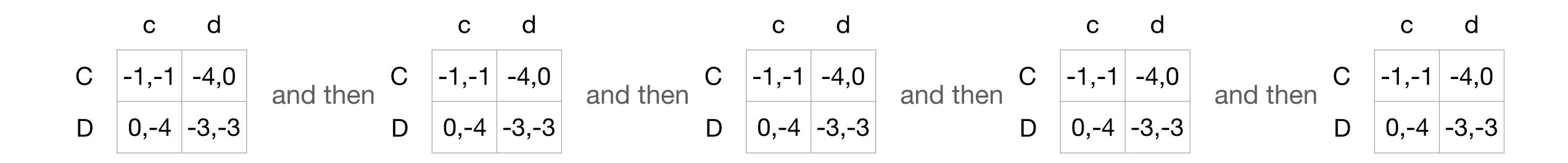
Representing Finitely Repeated Games

- Recall that we can represent normal form games as imperfect information extensive form games
- We can do the same for repeated games:





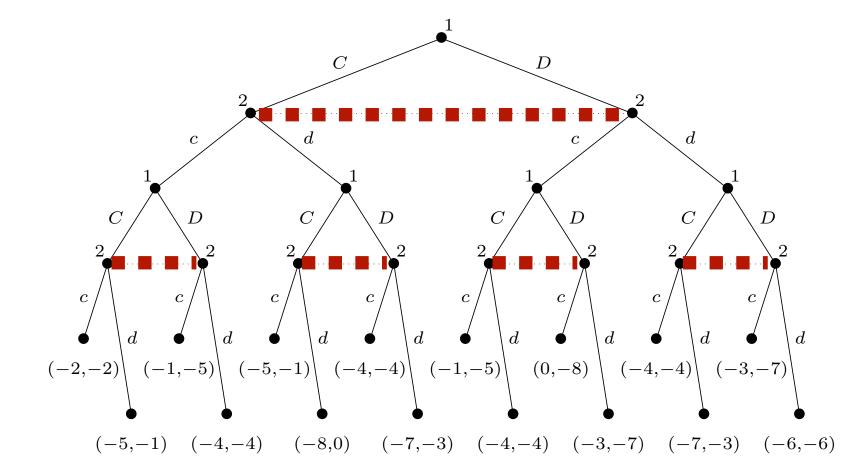
Fun (Repeated) Game



- Play the Prisoner's Dilemma five times in a row against the same person
- Play at least two people

Properties of Finitely Repeated Games

- Playing an equilibrium of the stage game at every stage is an equilibrium of the repeated game (why?)
 - Instance of a stationary strategy
- In general, pure strategies can depend on the previous history (why?)
- Question: When the normal form game has a dominant strategy, what can we say about the equilibrium of the finitely repeated game?



Infinitely Repeated Game

Suppose that *n* players play a normal form game against each other infinitely many times.

Questions:

- 1. Do they remember what happened in the previous games?
- 2. What is the **utility** for the whole game?
- 3. What are the pure strategies?
- 4. Can we write these games in the imperfect information extensive form?

Payoffs in Infinitely Repeated Games

- Question: What are the payoffs in an infinitely repeated game?
 - We cannot take the **sum of payoffs** in an infinitely repeated game, because there are **infinitely many of them**
 - We cannot put the overall utility on the terminal nodes, because there aren't any
- Two possible approaches:
 - 1. **Average reward:** Take the limit of the average reward to be the overall reward of the game
 - 2. **Discounted reward:** Apply a **discount factor** to future rewards to guarantee that they will converge

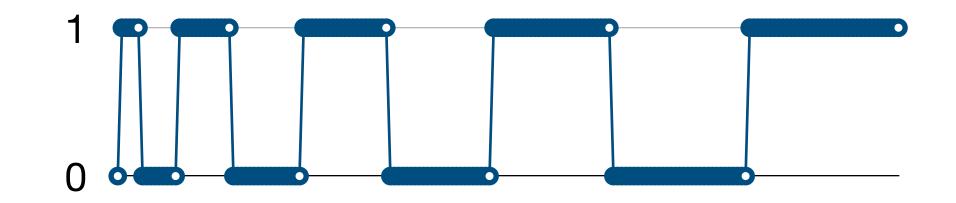
Average Reward

Definition:

Given an infinite sequence of payoffs $r_i^{(1)}, r_i^{(2)}, \dots$ for player i, the **average reward** of i is

$$\lim_{t \to \infty} \frac{1}{T} \sum_{t=1}^{T} r_i^{(t)}.$$

• Problem: May not converge (why?)



Discounted Reward

Definition:

Given an infinite sequence of payoffs $r_i^{(1)}, r_i^{(2)}, \dots$ for player i, and a discount factor $0 \le \beta \le 1$, the future discounted reward of i is

$$\sum_{t=1}^{\infty} \beta^t r_i^{(t)}$$

- Interpretations:
 - 1. Agent is **impatient**: cares more about rewards that they will receive earlier than rewards they have to wait for.
 - 2. Agent cares equally about all rewards, but at any given round the game will **stop** with probability 1β .
- The two interpretations have identical implications for analyzing the game.

Strategy Spaces in Infinitely Repeated Games

Question: What is a pure strategy in an infinitely repeated game?

Definition:

For a stage game G = (N, A, u), let

$$A^* = \{\emptyset\} \cup A^1 \cup A^2 \cup \dots = \bigcup_{t=0}^{\infty} A^t$$

be the set of histories of the infinitely repeated game.

Then a pure strategy of the infinitely repeated game for an agent i is a mapping $s_i: A^* \to A_i$ from histories to player i's actions.

Equilibria in Infinitely Repeated Games

- Question: Are infinitely repeated games guaranteed to have Nash equilibria?
 - Recall: Nash's Theorem only applies to finite games
- Can we characterize the set of equilibria for an infinitely repeated game?
 - Can't build the induced normal form, there are infinitely many pure strategies (why?)
 - There could even be infinitely many pure strategy Nash equilibria! (how?)
- We can characterize the set of **payoff profiles** that are achievable in an equilibrium, instead of characterizing the equilibria themselves.

Enforceable

Definition:

Let $\underline{v_i} = \min_{s_{-i} \in S_{-i}} \max_{s_i \in S_i} u_i(s_i, s_{-i})$ be i's minmax value in G = (N, A, u).

Then a payoff profile $r=(r_1,\ldots,r_n)$ is **enforceable** if $r_i \geq \underline{v_i}$ for all $i \in N$.

• A payoff vector is enforceable (on i) if the other agents working together can ensure that i's utility is no greater than r_i .

Feasible

Definition:

A payoff profile $r=(r_1,\ldots,r_n)$ is **feasible** if there exist **rational**, non-negative values $\{\alpha_a \mid a \in A\}$ such that for all $i \in N$,

$$r_i = \sum_{a \in A} \alpha_a u_i(a),$$

with
$$\sum_{a \in A} \alpha_a = 1$$
.

• A payoff profile is feasible if it is a (rational) convex combination of the outcomes in G.

Folk Theorem

Theorem:

Consider any n-player normal form game G and payoff profile $r = (r_1, \ldots, r_n)$.

- 1. If r is the payoff profile for any Nash equilibrium of the infinitely repeated G with average rewards, then r is **enforceable**.
- 2. If *r* is both **feasible** and **enforceable**, then r is the payoff profile for some Nash equilibrium of the infinitely repeated *G* with average rewards.
- Whole family of similar proofs for discounted rewards case, subgame perfect equilibria, real convex combinations, etc.

Folk Theorem Proof Sketch: Nash Enforceable

- Suppose for contradiction that r is **not** enforceable, but r is the payoff profile in a Nash equilibrium s^* of the infinitely repeated game.
- Consider the strategy $s_i'(h) \in BR_i(s_{-i}^*(h))$ for each $h \in A^*$.
- Player i receives at least $v_i > r_i$ in every stage game by playing strategy s_i' (why?)
- So strategy s_i' is a **utility-increasing deviation** from s^* , and hence s^* is not an equilibrium.

Folk Theorem Proof Sketch: Enforceable & Feasible → Nash

- Suppose that r is both feasible and enforceable.
- We can construct a strategy profile s^* that visits each action profile a with frequency α_a (since α_a 's are all rational).
- At every history where a player i has not played their part of the cycle, all of the other players switch to playing the minmax strategy against i (this is called a *Grim Trigger* strategy)
 - That makes i's overall utility for the game $\underline{v}_i \leq r_i$ for any deviation s_i' . (why?)
 - Thus there is no utility-increasing deviation for i.

Summary

- A **repeated game** is one in which agents play the same normal form game (the **stage game**) multiple times.
- Finitely repeated: Can represent as an imperfect information extensive form game.
- Infinitely repeated: Life gets more complicated
 - Payoff to the game: either average or discounted reward
 - Pure strategies map from entire previous history to action
- Folk theorem characterizes which payoff profiles can arise in any equilibrium
 - All profiles that are both enforceable and feasible.