Further Solution Concepts

CMPUT 654: Modelling Human Strategic Behaviour

S&LB §3.4

Recap: Pareto Optimality

Definition: Outcome o Pareto dominates o' if

- 1. $\forall i \in N : o \succeq_i o'$, and
- 2. $\exists i \in N : o \succ_i o'$.

Equivalently, action profile a Pareto dominates a' if $u_i(a) \ge u_i(a')$ for all $i \in N$ and $u_i(a) > u_i(a')$ for some $i \in N$.

Definition: An outcome o^* is **Pareto optimal** if no other outcome Pareto dominates it.

Recap: Best Response and Nash Equilibrium

Definition:

The set of i's **best responses** to a strategy profile $S_{-i} \in S_{-i}$ is

$$BR_i(s_{-i}) \doteq \{s_i^* \in S \mid u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i}) \ \forall s_i \in S_i\}$$

Definition:

A strategy profile $s \in S$ is a Nash equilibrium iff

$$\forall i \in N, \ s_i \in BR_{-i}(s_{-i})$$

• When at least one s_i is mixed, s is a mixed strategy Nash equilibrium

Logistics: New Registrations

- I will be sending a list of extra students to enroll to the graduate program today after lecture
- If you would like to be on that list, please email me: james.wright@ualberta.ca
 - Please include CMPUT 654 registration in the subject
 - Some of you have talked to me about this already; please email me anyway

Lecture Outline

- 1. Recap & Logistics
- 2. Maxmin Strategies
- 3. Dominated Strategies
- 4. Rationalizability

Maxmin Strategies

Question:

Why would an agent want to play a maxmin strategy?

What is the maximum amount that an agent can guarantee in expectation?

Definition:

A maxmin strategy for i is a strategy \bar{s}_i that maximizes i's worst-case payoff:

$$\overline{s}_i = \arg\max_{s_i \in S_i} \left[\min_{s_{-i} \in S_i} u_i(s_i, s_{-i}) \right]$$

Definition:

The maxmin value of a game for i is the value \overline{v}_i guaranteed by a maxmin strategy:

$$\overline{v}_i = \max_{s_i \in S_i} \left[\min_{s_{-i} \in S_i} u_i(s_i, s_{-i}) \right]$$

Minmax Strategies

Question:

Why would an agent want to play a minmax strategy?

The corresponding strategy for the other player is the minmax strategy: the strategy that minimizes the other player's payoff.

Definition: (two-player games)

In a two-player game, the minmax strategy for player i against player -i is

$$\underline{s}_i = \arg\min_{s_i \in S_i} \left[\max_{s_{-i} \in S_{-i}} u_{-i}(s_i, s_{-i}) \right].$$

Definition: (*n*-player games)

In an n-player game, the minmax strategy for player i against player $j \neq i$ is i's component of the mixed strategy profile $\underline{s}_{(-i)}$ in the expression

$$\underline{s}_{(-j)} = \arg\min_{\substack{s_{-j} \in S_{-j} \\ s_j \in S_j}} \left[\max_{\substack{s_j \in S_j \\ s_j \in S_j}} u_j(s_j, s_{-j}) \right],$$

and the minmax value for player j is $\underline{v}_j = \min_{s_{-j} \in S_{-j}} \max_{s_j \in S_j} u_j(s_j, s_{-j})$.

Minimax Theorem

Theorem: [von Neumann, 1928]

In any finite, two-player, zero-sum game, in any Nash equilibrium $s^* \in S$, each player receives an expected utility v_i equal to both their maxmin and their minmax value.

Minimax Theorem Proof

Proof sketch:

- 1. Suppose that $v_i < \overline{v}_i$. But then i could guarantee a higher payoff by playing their maxmin strategy. So $v_i \geq \overline{v}_i$.
- 2. -i's equilibrium payoff is $v_{-i} = \max_{s_{-i}} u_{-i}(s_i^*, s_{-i})$.
- 3. Equivalently, $v_i = \min_{s_{-i}} u_i(s_i^*, s_{-i})$. (why?)
- 4. So $v_i = \min_{S_{-i}} u_i(s_i^*, s_{-i}) \le \max_{S_i} \min_{S_{-i}} u_i(s_i, s_{-i}) = \overline{v}_i$.
- 5. So $\overline{v}_i \le v_i \le \overline{v}_i$.

Zero-sum game, so $v_{-i} = -v_i$ $\max_{s_{-i}} u_{-i}(s_i^*, s_{-i}) = \max_{s_{-i}} -u_i(s_i^*, s_{-i})$ $\max_{s_{-i}} -u_i(s_i^*, s_{-i}) = -\min_{s_{-i}} u_i(s_i^*, s_{-i})$ $\sum_{s_{-i}} u_i(s_i^*, s_{-i}) = -\min_{s_{-i}} u_i(s_i^*, s_{-i})$

Minimax Theorem Implications

In any zero-sum game:

- 1. Each player's maxmin value is equal to their minmax value. We call this the value of the game.
- 2. For both players, the maxmin strategies and the Nash equilibrium strategies are the same sets.
- 3. Any maxmin strategy profile (a profile in which both agents are playing maxmin strategies) is a Nash equilibrium. Therefore, each player gets the same payoff in every Nash equilibrium (namely, their value for the game).

Corollary: There is no equilibrium selection problem.

Dominated Strategies

When can we say that one strategy is **definitely** better than another, from an **individual's** point of view?

Definition: (domination)

Let $s_i, s_i' \in S_i$ be two of player i's strategies. Then

- 1. s_i strictly dominates s_i' if $\forall s_{-i} \in S_{-i} : u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.
- 2. s_i weakly dominates s_i' if $\forall s_{-i} \in S_{-i} : u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$ and $\exists s_{-i} \in S_{-i} : u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$.
- 3. s_i very weakly dominates s_i' if $\forall s_{-i} \in S_{-i} : u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$.

Dominant Strategies

Definition:

A strategy is (strictly, weakly, very weakly) dominant if it (strictly, weakly, very weakly, very weakly) dominates every other strategy.

Definition:

A strategy is (strictly, weakly, very weakly) dominated if is is (strictly, weakly, very weakly) dominated by **some** other strategy.

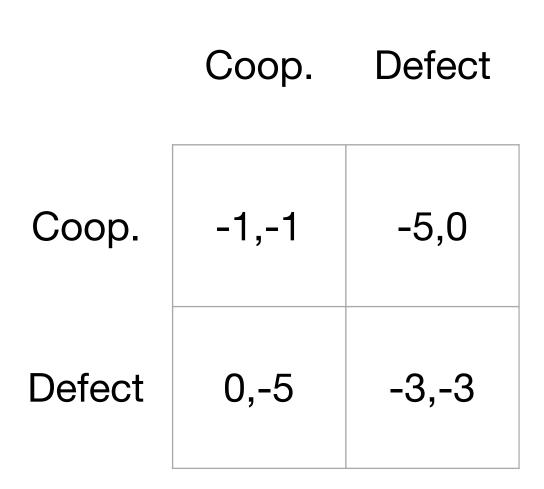
Definition:

A strategy profile in which every agent plays a (strictly, weakly, very weakly) dominant strategy is an **equilibrium in dominant strategies**.

Questions:

- Are dominant strategies guaranteed to exist?
- 2. What is the maximum number of weakly dominant strategies?
- 3. Is an equilibrium in dominant strategies also a Nash equilibrium?

Prisoner's Dilemma again



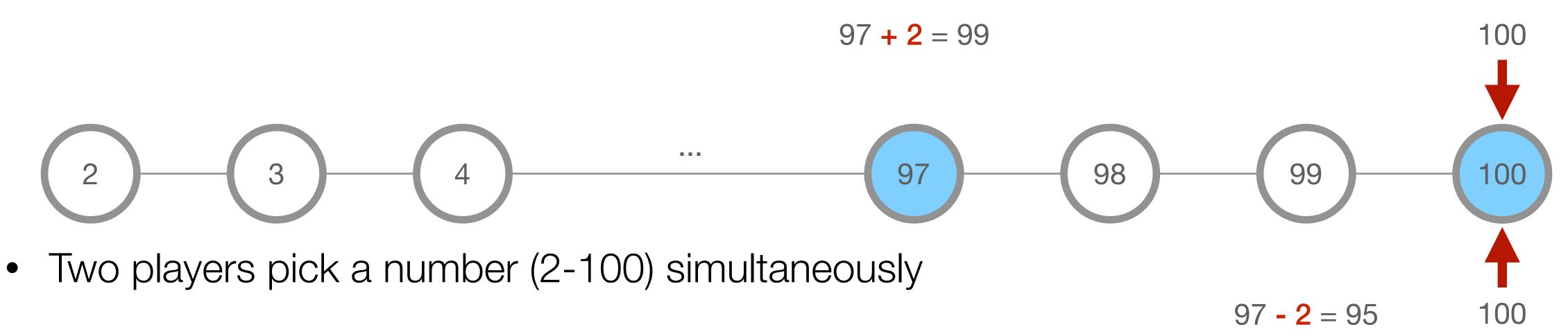
- Defect is a strictly dominant pure strategy in Prisoner's Dilemma.
 - Cooperate is strictly dominated.
- Question: Why would an agent want to play a strictly dominant strategy?
- Question: Why would an agent want to play a strictly dominated strategy?

Battle of the Sofas

	Ballet	Soccer	Home
Ballet	2,1	0,0	1,0
Soccer	0,0	1,2	0,0
Home	0,0	0,1	1,1

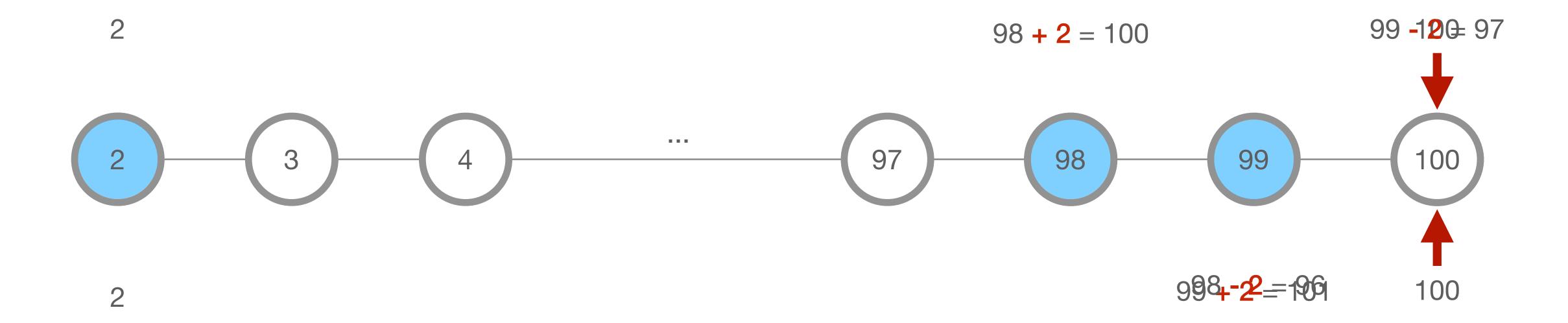
- What are the dominated strategies?
 - Home is a weakly dominated pure strategy in Battle of the Sofas.
- Question: Why would an agent want to play a weakly dominated strategy?

Fun Game: Traveller's Dilemma



- If they pick the same number x, then they both get \$x payoff
- If they pick different numbers:
 - Player who picked lower number gets lower number, plus bonus of \$2
 - Player who picked higher number gets lower number, minus penalty of \$2
- Play against someone near you, three times in total. Keep track of your payoffs!

Traveller's Dilemna



• Traveller's Dilemma has a unique Nash equilibrium

Iterated Removal of Dominated Strategies

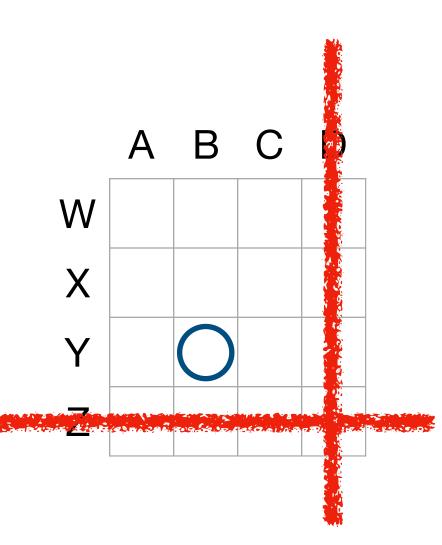
- No strictly dominated pure strategy will ever be played by a fully rational agent.
- So we can remove them, and the game remains strategically equivalent
- But! Once you've removed a dominated strategy, another strategy that wasn't dominated before might become dominated in the new game.
 - It's safe to remove this newly-dominated action, because it's never a best response to an action that the opponent would ever play.
- You can repeat this process until there are no dominated actions left

Iterated Removal of Dominated Strategies

Ballet 2,1 0,0 1,0
Soccer 0,0 1,2 0,0
Home 0,0 0,1 1,1

Ballet Soccer Home

- Removing strictly dominated strategies preserves all equilibria. (Why?)
- Removing weakly or very weakly dominated strategies may not preserve all equilibria. (Why?)
- Removing weakly or very weakly dominated strategies preserves at least one equilibrium. (Why?)
 - But because not all equilibria are necessarily preserved, the order in which strategies are removed can matter.



Nash Equilibrium Beliefs

One characterization of Nash equilibrium:

1. Rational behaviour:

Agents maximize expected utility with respect to their beliefs.

2. Rational expectations:

Agents have accurate probabilistic beliefs about the behaviour of the other agents.

Rationalizability

- We saw in the utility theory lecture that rational agents' beliefs need not be objective (or accurate)
- What strategies could possibly be played by:
 - 1. A rational player...
 - 2. ...with common knowledge of the rationality of all players?
- Any strategy that is a best response to some beliefs consistent with these two conditions is rationalizable.

Questions:

- What kind of strategy definitely could **not** be played by a rational player with common knowledge of rationality?
- 2. Is a rationalizable strategy guaranteed to exist?
- 3. Can a game have more than one rationalizable strategy?

Summary

- Maxmin strategies maximize an agent's guaranteed payoff
- Minmax strategies minimize the other agent's payoff as much as possible
- The Minimax Theorem:
 - Maxmin and minmax strategies are the only Nash equilibrium strategies in zero-sum games
 - Every Nash equilibrium in a zero-sum game has the same payoff
- **Dominated strategies** can be removed **iteratively** without strategically changing the game (too much)
- Rationalizable strategies are any that are a best response to some rational belief