Game Theory Intro

CMPUT 654: Modelling Human Strategic Behaviour

S&LB §3.2-3.3.3

Recap: Utility Theory

- Rational preferences are those that satisfy axioms
- Representation theorems:
 - von Neumann & Morgenstern: Any rational preferences over outcomes can be represented by the maximization of the expected value of some scalar utility function
 - Savage: Any rational preferences over acts can be represented by maximization of the expected value of some scalar utility function with respect to some probability distribution

Logistics: New Registrations

- I will be sending a list of extra students to enroll to the graduate program on Thursday after lecture
- If you would like to be on that list, please email me: james.wright@ualberta.ca
 - Please include CMPUT 654 registration in the subject line
 - Some of you have talked to me about this already; please email me anyway

Lecture Outline

- 1. Recap & Logistics
- 2. Noncooperative game Theory
- 3. Normal form games
- 4. Solution concept: Pareto Optimality
- 5. Solution concept: Nash equilibrium
- 6. Mixed strategies

(Noncooperative) Game Theory

- Utility theory studies rational single-agent behaviour
- Game theory is the mathematical study of interaction between multiple rational, self-interested agents
 - Self-interested: Agents pursue only their own preferences
 - Not the same as "agents are psychopaths"! Their preferences may include the well-being of other agents.
 - Rather, the agents are autonomous: they decide on their own priorities independently.

Fun Game: Prisoner's Dilemma

	Cooperate	Defect
Cooperate	-1,-1	-5,0
Defect	0,-5	-3,-3

Two suspects are being questioned separately by the police.

- If they both remain silent (cooperate -- i.e., with each other), then they will both be sentenced to
 1 year on a lesser charge
- If they both implicate each other (defect), then they will both receive a reduced sentence of 3 years
- If one defects and the other cooperates, the defector is given immunity (0 years) and the cooperator serves a full sentence of 5 years.

Play the game with someone near you. Then find a new partner and play again. Play 3 times in total, against someone new each time.

Normal Form Games

The Prisoner's Dilemma is an example of a **normal form game**. Agents make a single decision **simultaneously**, and then receive a payoff depending on the profile of actions.

Definition: Finite, *n*-person normal form game

- N is a set of n players, indexed by i
- $A = A_1 \times A_2 \times ... \times A_n$ is the set of action profiles
 - A_i is the action set for player i
- $u = (u_1, u_2, ..., u_n)$ is a utility function for each player
 - $u_i:A\to\mathbb{R}$

Normal Form Games as a Matrix

- Two-player normal form games can be written as a matrix with a tuple of utilities in each cell
- By convention, row player is first utility, column player is second
- Three-player normal form games can be written as a set of matrices, where the third player chooses the matrix

Games of Pure Competition (Zero-Sum Games)

Players have exactly opposed interests

- There must be precisely two players
 - Otherwise their interests can't be exactly opposed
- $u_1(a) + u_2(a) = c$ for all action profiles $a \in A$
 - c = 0 without loss of generality (why?)
- In a sense it's a one-player game
 - Only need to store a single number per cell
 - But also in a deeper sense, by the Minimax Theorem

Matching Pennies

Row player wants to match, column player wants to mismatch

	Heads	Tails
Heads	1,-1	-1,1
Tails	-1,1	1,-1

Play against someone near you. Repeat 3 times.

Games of Pure Cooperation

Players have exactly the same interests.

- $u_i(a) = u_j(a)$ for all $i, j \in N$ and $a \in A$
- Can also write these games with one payoff per cell

Question: In what sense are these games non-cooperative?

Coordination Game

Which side of the road should you drive on?

	Left	Right
Left	1	-1
Right	-1	1

Play against someone near you. Play 3 times in total, playing against someone new each time.

General Game: Battle of the Sexes

The most interesting games are simultaneously both cooperative and competitive!

	Ballet	Soccer
Ballet	2, 1	0, 0
Soccer	0, 0	1, 2

Play against someone near you. Play 3 times in total, playing against someone new each time.

Optimal Decisions in Games

- In single-agent decision theory, the key notion is optimal decision: a decision that maximizes the agent's expected utility
- In a multiagent setting, the notion of optimal strategy is incoherent
 - The best strategy depends on the strategies of others

Solution Concepts

- From the viewpoint of an outside observer, can some outcomes of a game be labelled as better than others?
 - We have no way of saying one agent's interests are more important than another's
 - We can't even compare the agents' utilities to each other, because of affine invariance! We don't know what "units" the payoffs are being expressed in.
- Game theorists identify certain subsets of outcomes that are interesting in one sense or another. These are called solution concepts.

Pareto Optimality

- Sometimes, some outcome o is at least as good for any agent as outcome o', and there is some agent who strictly prefers o to o'.
 - Example: o' = "Everyone gets pie", vs. o = "Everyone gets pie and also Alice gets cake"
 - In this case, o seems defensibly better than o^\prime

Definition: o **Pareto dominates** o' when $o \succeq_i o'$ for **all** $i \in N$ and $o \succ_i o'$ for **some** $i \in N$.

Definition:

An outcome o^* is Pareto optimal if no other outcome Pareto dominates it.

Questions:

- Can a game have more than one Pareto-optimal outcome?
- Does every game have at least one Pareto-optimal outcome?

Pareto Optimality of Examples

	Coop.	Defect		Left	Right
Coop.	-1,-1	-5,0	Left	1	-1
Defect	0,-5	-3,-3	Right	-1	1

Defect	0,-5	-3,-3	Right	-1	1	ı
	Ballet	Soccer		Heads	Tails	l
Ballet	2, 1	0, 0	Heads	1,-1	-1,1	
Soccer	0, 0	1, 2	Tails	-1,1	1,-1	

Best Response

- Which actions are better from an individual agent's viewpoint?
- That depends on what the other agents are doing!

Notation:

$$a_{-i} \doteq (a_1, a_2, ..., a_{i-1}, a_{i+1}, ..., a_n)$$

 $a = (a_i, a_{-i})$

Definition: Best response

$$BR_i(a_{-i}) \doteq \{a_i^* \in A_i \mid u_i(a^*, a_{-i}) \ge u_i(a_i, a_{-i}) \ \forall a_i \in A_i \}$$

Nash Equilibrium

- Best response is not, in itself, a solution concept
 - In general, agents won't know what the other agents will do
 - But we can use it to define a solution concept
- A Nash equilibrium is a stable outcome: one where no agent regrets their actions

Definition:

An action profile $a \in A$ is a (pure strategy) Nash equilibrium iff $\forall i \in N: \ a_i \in BR_{-i}(a_{-i})$

Questions:

- Can a game have more than one pure strategy Nash equilibrium?
- 2. Does every game have **at least one** pure strategy Nash equilibrium?

Nash Equilibria of Examples

	Left	Right
Left	1	-1
Right	-1	1
	Heads	Tails
Heads	1,-1	-1,1
Tails	-1,1	1,-1

Mixed Strategies

- So far, we have been assuming that agents play a single action deterministically
 - But that's a pretty bad idea in, e.g., Matching Pennies

Definition:

A strategy s_i for agent i is any probability distribution over the set A_i , where each action a_i is played with probability $s_i(a_i)$.

- Pure strategy: only a single action is played
- Mixed strategy: randomize over multiple actions
- Set of i's strategies: $S_i \doteq \Delta(A_i)$
- Set of strategy profiles: $S \doteq S_1 \times ... \times S_n$

Utility Under Mixed Strategies

The utility under a mixed strategy profile is expected utility (why?)

- Because we assume agents are decision-theoretically rational
- We assume that the agents randomize independently

Definition:

$$u_i(s) = \sum_{a \in A} \Pr(a \mid s) u_i(a),$$

where
$$\Pr(a \mid s) = \prod_{j \in N} s_j(a_j)$$

Best Response and Nash Equilibrium

Definition:

The set of i's **best responses** to a strategy profile $s_{-i} \in S_{-i}$ is

$$BR_i(s_{-i}) \doteq \{s_i^* \in S \mid u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i}) \ \forall s_i \in S_i\}$$

Definition:

A strategy profile $s \in S$ is a Nash equilibrium iff

$$\forall i \in N: \ s_i \in BR_{-i}(s_{-i})$$

- When at least one s_i is mixed, s is a mixed strategy Nash equilibrium
- When every s_i is deterministic, s is a pure strategy Nash equilibrium

Nash's Theorem

Theorem: [Nash 1951]

Every game with a finite number of players and action profiles has at least one Nash equilibrium.

Proof idea:

- 1. Brouwer's fixed-point theorem guarantees that any continuous function from a simpletope to itself has a fixed point.
- 2. Construct a continuous function $f: S \to S$ whose fixed points are all Nash equilibria.
 - NB: A simpletope is a product of simplices, so S is a simpletope

Interpreting Mixed Strategy Nash Equilibrium

What does it even mean to say that agents are playing a mixed strategy Nash equilibrium?

- They truly are sampling a distribution in their heads, perhaps to confuse their opponents (e.g., soccer, other zero-sum games)
- The distribution represents the other agents' uncertainty about what the agent will do
- The distribution is the empirical frequency of actions in repeated play
- The distribution is the frequency of a pure strategy in a population of pure strategies (i.e., every individual plays a pure strategy)

Summary

- Game theory studies the interactions of rational agents
 - Canonical representation is the normal form game
- Game theory uses solution concepts rather than optimal behaviour
 - "Optimal behaviour" is not clear-cut in multiagent settings
 - Pareto optimal: no agent can be made better off without making some other agent worse off
 - Nash equilibrium: no agent regrets their strategy given the choice of the other agents' strategies