Utility Theory

CMPUT 654: Modelling Human Strategic Behaviour

S\&LB §3.1

Recap: Course Essentials

Course webpage: jrwright.info/bgtcourse/

Contacting me:

- Discussion board: piazza.com/ualberta.ca/fall2019/cmput654/ for public questions about assignments, lecture material, etc.
- Email: james.wright@ualberta.ca
for private questions (health problems, inquiries about grades)
- Office hours: After every lecture, or by appointment

Utility, informally

A utility function is a real-valued function that indicates how much an agent prefers an outcome.

Rational agents act to maximize their expected utility.

Nontrivial claim:

1. Why should we believe that an agent's preferences can be adequately represented by a single number?
2. Why should agents maximize expected value rather than some other criterion?

Von-Neumann and Morgenstern's Theorem shows when these are true.

Outline

1. Informal statement
2. Theorem statement (von Neumann \& Morgenstern)
3. Proof sketch
4. Fun game!
5. Representation theorem (Savage)

Formal Setting:
 Outcome

Definition: Let O be a set of outcomes:

$$
O=Z \cup \Delta(O)
$$

where Z is some set of "actual outcomes", and
Not a typo!
$\Delta(X)$ represents the set of lotteries over finite subsets of X :

$$
\left[p_{1}: x_{1}, \ldots, p_{k}: x_{k}\right]
$$

with $\sum_{j=1}^{k} p_{j}=1$ and $x_{j} \in X \quad \forall 1 \leq j \leq k$

Formal Setting: Preference Relation

A preference relation is a relationship between outcomes.

Definition

For a specific preference relation \succeq, write:

1. $o_{1} \geq o_{2}$ if the agent weakly prefers o_{1} to o_{2},
2. $o_{1}>o_{2}$ if the agent strictly prefers o_{1} to o_{2},
3. $o_{1} \sim o_{2}$ if the agent is indifferent between o_{1} and o_{2}.

Formal Setting

Definition

A utility function is a function $u: O \rightarrow \mathbb{R}$. A utility function represents a preference relation \geq iff:

1. $o_{1} \geq o_{2} \Longleftrightarrow u\left(o_{1}\right) \geq u\left(o_{2}\right)$, and
2. $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{j=1}^{k} p_{j} u\left(o_{j}\right)$.

Representation Theorem

Theorem: [von Neumann \& Morgenstern, 1944]

Suppose that a preference relation \geq satisfies the axioms Completeness, Transitivity, Monotonicity, Substitutability, Decomposability, and Continuity.

Then there exists a function $u: O \rightarrow \mathbb{R}$ such that

1. $o_{1} \geq o_{2} \Longleftrightarrow u\left(o_{1}\right) \geq u\left(o_{2}\right)$, and
2. $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{j=1}^{k} p_{j} u\left(o_{j}\right)$.

That is, there exists a utility function that represents \geq.

Completeness and Transitivity

Definition (Completeness):

$$
\forall o_{1}, o_{2}:\left(o_{1} \succ o_{2}\right) \vee\left(o_{1}<o_{2}\right) \vee\left(o_{1} \sim o_{2}\right)
$$

Definition (Transitivity):

$$
\forall o_{1}, o_{2}:\left(o_{1} \geq o_{2}\right) \wedge\left(o_{2} \geq o_{3}\right) \Longrightarrow o_{1} \succeq o_{3}
$$

Transitivity Justification: Money Pump

- Suppose that $\left(o_{1}>o_{2}\right)$ and $\left(o_{2}>o_{3}\right)$ and $\left(o_{3}>o_{1}\right)$.
- Starting from o_{3}, you are willing to pay $1 \varnothing$ (say) to switch to o_{2}
- But from o_{2}, you should be willing to pay $1 \subset$ to switch to o_{1}
- But from o_{1}, you should be willing to pay $1 \subset$ to switch back to o_{3} again...

Monotonicity

Definition (Monotonicity):

If $o_{1}>o_{2}$ and $p>q$, then

$$
\left[p: o_{1},(1-p): o_{2}\right] \succ\left[q: o_{1},(1-q): o_{2}\right] .
$$

You should prefer a 90\% chance of getting $\$ 1000$ to a 50% chance of getting $\$ 1000$.

Substitutability

Definition (Substitutability):

If $o_{1} \sim o_{2}$, then for all sequences o_{3}, \ldots, o_{k} and p, p_{3}, \ldots, p_{k}
with $p+\sum_{j=3}^{k} p_{j}=1$,

$$
\left[p: o_{1}, p_{3}: o_{3}, \ldots, p_{k}: o_{k}\right] \sim\left[p: o_{2}, p_{3}: o_{3}, \ldots, p_{k}: o_{k}\right]
$$

If I like apples and bananas equally, then I should be indifferent between a 30\% chance of getting an apple and a 30\% chance of getting a banana.

Decomposability aka "No Fun in Gambling"

Definition (Decomposability):

Let $P_{\ell}(o)$ denote the probability that lottery ℓ selects outcome o.
If $P_{\ell_{1}}\left(o_{j}\right)=P_{\ell_{2}}\left(o_{j}\right) \forall o_{j} \in O$, then $\ell_{1} \sim \ell_{2}$.

Example:

$$
\begin{aligned}
& \text { Let } \ell_{1}=\left[0.5:\left[0.5: o_{1}, 0.5: o_{2}\right], 0.5: o_{3}\right] \\
& \text { Let } \ell_{2}=\left[0.25: o_{1}, 0.25: o_{2}, 0.5: o_{3}\right]
\end{aligned}
$$

Then $\ell_{1} \sim \ell_{2}$, because

$$
\begin{array}{ll}
P_{\ell_{1}}\left(o_{1}\right)=0.5 \times 0.5=0.25 & =P_{\ell_{2}}\left(o_{1}\right) \\
P_{\ell_{1}}\left(o_{2}\right)=0.5 \times 0.5=0.25 & =P_{\ell_{2}}\left(o_{2}\right) \\
P_{\ell_{1}}\left(o_{3}\right)=0.5 & =P_{\ell_{2}}\left(o_{3}\right)
\end{array}
$$

Continuity

Definition (Continuity):

If $o_{1}>o_{2} \succ o_{3}$, then $\exists p \in[0,1]$ such that

$$
o_{2} \sim\left[p: o_{1},(1-p): o_{3}\right]
$$

Proof Sketch:

Construct the utility function

1. If \geq satisfies Completeness, Transitivity, Monotonicity, Decomposability, then for every $\left.o_{1} \succ o_{2}\right\rangle o_{3}$, there exists some p such that:
(a) $o_{2}>\left[q: o_{1},(1-q): o_{3}\right] \forall q<p$, and
(b) $o_{2}<\left[q: o_{1},(1-q): o_{3}\right] \forall q>p$.
2. If \succeq additionally satisfies Continuity, then

$$
\exists p: o_{2} \sim\left[p: o_{1},(1-p): o_{3}\right] .
$$

3. Choose maximal $o^{+} \in O$ and minimal $o^{-} \in O$.

Question: Are o^{+}and o^{-} guaranteed to exist?
4. Construct $u(o)=p$ such that $o \sim\left[p: o^{+},(1-p): o^{-}\right]$.

Proof sketch:

 Check the properties

 Check the properties}

$$
\begin{aligned}
\text { 1. } o_{1} \geq o_{2} & \Longleftrightarrow u\left(o_{1}\right) \geq u\left(o_{2}\right) \\
& u(o)=p \text { such that } o \sim\left[p: o^{+},(1-p): o^{-}\right] .
\end{aligned}
$$

Proof sketch:

Check the properties

2. $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{j=1}^{k} p_{j} u\left(o_{j}\right)$
(i) Let $u^{*}=u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)$
(ii) Replace o_{j} with $\ell_{j}=\left[u\left(o_{j}\right): o^{+},\left(1-u\left(o_{j}\right)\right): o^{-}\right]$, giving

$$
\left[p_{1}: \ell_{1}, \ldots, p_{k}: \ell_{k}\right]=\left[p_{1}:\left[u\left(o_{1}\right): o^{+},\left(1-u\left(o_{1}\right)\right): o^{-}\right], \ldots, p_{k}:\left[u\left(o_{k}\right): o^{+},\left(1-u\left(o_{k}\right)\right): o^{-}\right]\right]
$$

(iii) Question: What is $u\left(\left[p_{1}: \ell_{1}, \ldots, p_{k}: \ell_{k}\right]\right)$?
$u\left(\left[p_{1}: \ell_{1}, \ldots, p_{k}: \ell_{k}\right]\right)=u^{*}$
(iv) Question: What is the probability of getting o^{+}in $\left[p_{1}: \ell_{1}, \ldots, p_{k}: \ell_{k}\right]$?
$\sum_{j=1}^{k}\left(p_{j} \times u\left(o_{j}\right)\right)$
(v) Construct $\ell^{*}=\left[\sum_{j=1}^{k}\left(p_{j} \times u\left(o_{j}\right)\right): o^{+},\left(1-\sum_{j=1}^{k}\left(p_{i} \times u\left(o_{j}\right)\right)\right): o^{-}\right] \quad u\left(\ell^{*}\right)=\sum_{j=1}^{k}\left(p_{j} \times u\left(o_{j}\right)\right)$
(vi) Observe that $\left[p_{1}: \ell_{1}, \ldots, p_{k}: \ell_{k}\right] \sim \ell^{*}(\mathbf{w h y}$? $)$

$$
u\left(\left[p_{1}: \ell_{1}, \ldots, p_{k}: \ell_{k}\right]\right)=u^{*}=u\left(\ell^{*}\right)=\sum_{j=1}^{k}\left(p_{j} \times u\left(o_{j}\right)\right)
$$

Caveats \& Details

Utility functions are not uniquely defined. (Why?)

- Invariant to affine transformations (i.e., $m>0$):

$$
\begin{aligned}
& \mathbb{E}[u(X)] \geq \mathbb{E}[u(Y)] \Longleftrightarrow X \geq Y \\
\Longleftrightarrow & \mathbb{E}[m u(X)+b] \geq \mathbb{E}[m u(Y)+b] \Longleftrightarrow X \geq Y
\end{aligned}
$$

This means we're not stuck with a range of $[0,1]$!

Caveats \& Details

The proof depended on minimal and maximal elements of O, but that is not critical.
Construction for unbounded outcomes/preferences:

1. Pick two outcomes $o_{s} \prec o_{e}$. Construct utility for all outcomes $o_{s} \leq o \leq o_{e}$:

$$
u:\left\{o \in O \mid o_{s} \leq o \leq o_{e}\right\} \rightarrow[0,1]
$$

2. For outcomes o^{\prime} outside that range, choose $o_{s^{\prime}}<o^{\prime}<o_{s}<o_{e}<o_{e^{\prime}}$.
3. Construct utility $u^{\prime}:\left\{o \in O \mid o_{s^{\prime}} \leq o \leq o_{e^{\prime}}\right\} \rightarrow[0,1]$.
4. Find $m>0$ and $b \in \mathbb{R}$ such that $m u^{\prime}\left(o_{s}\right)+b=u\left(o_{s}\right)$ and $m u^{\prime}\left(o_{e}\right)+b=u\left(o_{e}\right)$.
5. Let $u(o)=m u^{\prime}(o)+b$ for all $o \in\left\{o^{\prime} \in O \mid o_{s^{\prime}} \leq o^{\prime} \leq o_{e^{\prime}}\right\}$.

Fun game:

Buying lottery tickets

Write down the following numbers:

1. How much would you pay for the lottery [0.3: \$5, $0.3: \$ 7,0.4: \$ 9]$?
2. How much would you pay for the lottery [p:\$5, q:\$7, (1-p-q):\$9]?
3. How much would you pay for the lottery
[$p: \$ 5, q: \$ 7,(1-p-q): \$ 9]$
if you knew the last seven draws had been 5,5,7,5,9,9,5?

Beyond von Neumann \& Morgenstern

- The first step of the fun game was a good match to the utility theory we just learned.
- Question: If two agents have different prices for [0.3: \$5, $0.3: \$ 7,0.4: \$ 9]$, what does that say about their utility functions for money?
- The second and third steps, not so much!
- Question: If two agents have different prices for
[p:\$5, q:\$7, (1-p-q):\$9], what does that say about their utility functions?
- What if two people have the same prices for step 2 but different prices once they hear what the last few draws were?

Another Formal Setting

- States: Set S of elements s, s^{\prime}, \ldots with subsets A, B, C, \ldots
- Consequences: Set F of elements f, g, h, \ldots
- Acts: Arbitrary functions $\mathbf{f}: S \rightarrow F$
- Preference relation \geq between acts
- $(\mathbf{f} \geq \mathbf{g}$ given $B) \Longleftrightarrow$
$\mathbf{f}^{\prime} \geq \mathbf{g}^{\prime}$ for every $\mathbf{f}^{\prime}, \mathbf{g}^{\prime}$ that agree with \mathbf{f}, \mathbf{g} respectively on B and each other on \bar{B}

Another

Representation Theorem

Theorem: [Savage, 1954]

Suppose that a preference relation \geq satisfies postulates P1-P6.
Then there exists a utility function U and a probability measure P such that

$$
\mathbf{f} \geq \mathbf{g} \Longleftrightarrow \sum_{i} P\left[B_{i}\right] U\left[f_{i}\right] \geq \sum_{i} P\left[B_{i}\right] U\left[g_{i}\right] .
$$

Postulates

P1 \geq is a simple order

P2 $\quad \forall \mathbf{f}, \mathbf{g}, B:(\mathbf{f} \succeq \mathbf{g}$ given $B) \vee(\mathbf{g} \succeq \mathbf{f}$ given $B)$
P3 $\quad\left(\mathbf{f}(s)=g \wedge \mathbf{f}^{\prime}(s)=g^{\prime} \forall s \in B\right) \Longrightarrow\left(\mathbf{f} \succeq \mathbf{f}^{\prime}\right.$ given $\left.B \Longleftrightarrow g \geq g^{\prime}\right)$
P4 For every A, B, either $A \leq B$ or $B \leq A$ (see D4)

P5 It is false that for every $f, f^{\prime}, f \succeq f^{\prime}$.
P6 For all $\mathbf{g}>\mathbf{h}$ and consequence f, there exists a partition of S such that the consequence of either \mathbf{g} or \mathbf{h} can be replaced by f without changing the ordering of the two acts.

Summary

- Using very simple axioms about preferences over lotteries, utility theory proves that rational agents ought to act as if they were maximizing the expected value of a real-valued function.
- Rational agents are those whose behaviour satisfies a certain set of axioms
- If you don't buy the axioms, then you shouldn't buy that this theorem is about rational behaviour
- Can extend beyond this to "subjective" probabilities, using axioms about preferences over uncertain "acts" that do not describe how agents manipulate probabilities.

