(Generalization Bounds

CMPUT 296: Basics of Machine Learning



| ogistics

Thought questions #3 marked (finally...)
Thought questions #4 due TODAY at 11:59pm (Mountain time)

* Anything between logistic regression and generalization bounds Is fair game
Last class will be on Tuesday (Dec 1)

* [t will be a review class for the final exam

Assignment #3 due Thursday Dec 3

e But there i1s no class on Dec 3

FINAL EXAM will be Friday Dec 18



Outline

1. Recap & Logistics

2. McDiarmid's Inequality

3. Proof of Generalization Bound for Binary Classification



Recap: Rademacher Complexity

The empirical Rademacher complexity of # with respect to & is

ﬁ@(f’ff) = [E max—z o f(x;)

feF n

where
e D ={(x,y) |1 <i< n}isadataset

e o0 =(0y,0y,...,0,) is avector of n random variables, with o; Umform{ 1,+ 1}
("Rademacher varlables")

e F is a hypothesis class

he Rademacher complexity of a hypothesis class & is the expected empirical
Rademacher complexity over all datasets & (of size n):

n

R,(F) = E |Ro(F)




Recap: Uniform Generalization Bouno
for Binary Classification

Theorem:
Let & be a family of binary classification functions taking values in
{—1,+ 1}, and let cost be the 0-1 classification cost.

Then for every f € &, and every 6 > 0,

log 1/6
2n

C(f) < C(f) + R(F) +\/

with probability 1 — 6.




implication:
[raining Error vs. lest Error

A log 1/6
C(f) <C(f)+R(F)+ —— Vfe F

1. The more data you have, the closer your training error will be to the true
generalization error

2. The simpler your hypothesis class, the closer your training error will be to
the true error

» Notice that this bound applies to all f € F

Question: \Why does this bound not go to zero for infinite data”?



VicDiarmid's Inequality

Let S = (X, ..., X)) € X" be avector of n > 1 independent random variables.

If there exist constants ¢y, ..., ¢, such that f : " — R satisfies

SO o X oo X)) — fX, oo X, e X)) | S 6

forevery 1 < k < n and any values xy, ..., x,,x, € &, then for all € > 0,
—2¢?
1. Pr [f(S) — ELf(S)] = G] < exp ~ and
2, CF

—2¢?
2 Pr [(S) — ELf(S)] < — €] < exp 572 )




Proof: Generalization Bound for
Binary Classification

Update our notation for empirical cost to indicate the dataset:

n

n |
Co(f) == ) cost(f(x,), )

n
=1

Define P(D) as the maximum difference between the true cost of a predictor
and the empirical cost on dataset I:

O(D) = max C(f) — Co(f)

fex

(A bit sloppy; should really use supfeg,)



Proof (2):
Bounding | ®(2) — (D)

Let D and Y’ be two datasets of n observations that differ in exactly one
datapoint: (X, y;) # (X1, ), and (x;,y;) = (x;, ;) forall i # k

(D) — D(D) = (max C(f) - @@(f)> - (max Clg) — é@(g))

fesF gESF

< max (C(/) = Co(N ) = (€N = Eo )

fesF

= max C(f) — Co,(f) — C(f) + Co(f)

fex

= max Cy(f) — Co(f)

fesF



Proof (3):
Bounding | D(D) — D(D)

D(D) — D(D') < max Co(f) — Co)(f)

fes

i cost(f(x;), y;) — cost(f(x;), y;)

= max
fe# * n
=1
cost (f(x). i) — cost (f0xp). y¢)
= max
fexr n

By an identical argument, ®(9') — (YD) < 1/n. So

1
< —
n

| D(D) — D(D)

1



Proof (4):
Bounding (YY)

1
< — =1
n

| D(D) — D(D)

Apply McDiarmid's Inequality:

Pr [(D(QZ) — E[DP(D)] > e] < exp ( Z; l/nz/ § = exp(—2ne?)
— logd = — 2ne?
=

—logo

€

Pr [@(@) — E[®(D)] >

<
=

[ \/1og1/5
Pr | ®(Y) < E[P(D)] +



Proof (5): Bounding E[®(D)]

| - log 1/6
With probability 1 — o, we have ®(D) <|E[DP(D)]|+ .

=[@(2)]

IN

n

o [max C(f) — Co(f)

feF

=9 [max = :C‘@,(f) — é@(f):]

fes

Jensen's inequality

For any convex function

¥ - R,

il

—[X]) <

= [S(X)]

-9, [max Colf) — é@(f)]

feF

1 n
3 9 |:I;;ja%z( ; Z (cost( J(x), y;) — cost(f(x;), )’i,))

=1

|

» (Max is a convex function)




Proof (0): Bounding E[®(D)]

1 n
o P(D)] £ Eg o [max— Z (cost(f(x;), y;) — Cost(f(xi’),y{))]
feFx Nn

=1

feF n

S lmax—Za cost(f(x;),y;) — cost(f(x;), yl))]
=1

I/\

- 9 l(?éix - Z o; cost(f(x,), yl)> (r}gg% Y — 6, cost(f(x)). yl.')>]

=1

=1

o [I}éix n Z o; cost(f(x;), yl)] "9 g [I]g;(% Z — o; cost( f(x,), yl.’)]



Proof (7): Bounding [E[cD(QZ)]

Egl®(2)] < Eg,

max — Z 6, cost(f(x)), y;)

fEJf n

— 2”5@,0.

— 2[E9,6

— 2[EQZ,0'

2

— [EQZ,G

1 |
= 2—FE max — .
20 feF n Z l

few n

max — Z o; cost(f(x,), y;)

=1

feF n 4

max — Y o.f(x)
i=1

max — o(l —1

fe i ; ( f(x)—yl)
i i 1 — X
max — Z o, yzf( )
feF 1 2

’ fEJf n

=1

1
+ EZ[E@,G max — Z o, — v, f(x;)

Eg

fEJf n

n

fEJr n
=1

_Rgz(f’]’ ):




Proof: Putting 1t all together

log 1/0
1. With probability 1 — o, we have ®(P) < E[D(D)] + 5
n

2. Eg[P(D)] £ R,(F)

3. With probability 1 — 9,

log 1/6
2n

(D) < R(F) +\/

log 1/6
2n

max C(f) = Cg(f) < R(F) \/

feF

A log 1/6
C(f) < Co(f) + R(F) +\/ . Ve F.n

2n




Summary

* McDiarmid's Inequality is a generalization of Hoeftding's Inequality for "stable enough”

functions

* \We can use McDiarmid's Inequality to prove upper bounds on generalization performance

such as (for binary classification)

C(f) < Coy(f) + R(F) +\/

log 1/6

2n

9

Vie F

* Bounds of this kind shed light on the relationship between training error and

generalization error

» The more flexible your hypothesis class (larger R (#)), the bigger the d

* This difference is the origin of overfitting

ference can be




