Generalization Bounds

CMPUT 296: Basics of Machine Learning

Textbook Ch.12

Logistics

- Thought questions #3 marked (finally...)
- Thought questions #4 due TODAY at 11:59pm (Mountain time)
 - Anything between logistic regression and generalization bounds is fair game
- Last class will be on Tuesday (Dec 1)
 - It will be a review class for the final exam
- Assignment #3 due Thursday Dec 3
 - But there is no class on Dec 3
- FINAL EXAM will be Friday Dec 18

Outline

- 1. Recap & Logistics
- 2. McDiarmid's Inequality
- 3. Proof of Generalization Bound for Binary Classification

Recap: Rademacher Complexity

The empirical Rademacher complexity of ${\mathscr F}$ with respect to ${\mathscr D}$ is

$$\hat{R}_{\mathcal{D}}(\mathcal{F}) = \mathbb{E} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f(x_{i}) \right]$$

where

- $\mathscr{D} = \{(\mathbf{x}_i, y_i) \mid 1 \le i \le n\}$ is a dataset
- $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n)$ is a vector of n random variables, with $\sigma_i \stackrel{i.i.d}{\sim}$ Uniform $\{-1, +1\}$ ("Rademacher variables")
- F is a hypothesis class

The Rademacher complexity of a hypothesis class \mathscr{F} is the expected empirical Rademacher complexity over all datasets \mathscr{D} (of size n):

$$R_n(\mathcal{F}) = \mathbb{E}\left[\hat{R}_{\mathcal{D}}(\mathcal{F})\right]$$

Recap: Uniform Generalization Bound for Binary Classification

Theorem:

Let \mathcal{F} be a family of binary classification functions taking values in $\{-1,+1\}$, and let $\cos t$ be the 0-1 classification cost.

Then for every $f \in \mathcal{F}$, and every $\delta > 0$,

$$C(f) \le \hat{C}(f) + R_n(\mathcal{F}) + \sqrt{\frac{\log 1/\delta}{2n}}$$

with probability $1 - \delta$.

Implication: Training Error vs. Test Error

$$C(f) \le \hat{C}(f) + R_n(\mathcal{F}) + \sqrt{\frac{\log 1/\delta}{2n}}, \quad \forall f \in \mathcal{F}$$

- 1. The more data you have, the closer your training error will be to the true generalization error
- 2. The **simpler** your hypothesis class, the closer your training error will be to the true error
 - Notice that this bound applies to all $f \in \mathcal{F}$

Question: Why does this bound not go to zero for infinite data?

McDiarmid's Inequality

Let $S = (X_1, ..., X_n) \in \mathcal{X}^n$ be a vector of $n \ge 1$ independent random variables.

If there exist constants $c_1, ..., c_n$ such that $f: \mathcal{X}^n \to \mathbb{R}$ satisfies

$$|f(x_1, ..., x_k, ..., x_n) - f(x_1, ..., x_k', ..., x_n)| \le c_k$$

for every $1 \le k \le n$ and any values $x_1, \ldots, x_n, x_k' \in \mathcal{X}$, then for all $\epsilon > 0$,

1.
$$\Pr\left[f(S) - \mathbb{E}[f(S)] \ge \epsilon\right] \le \exp\left(\frac{-2\epsilon^2}{\sum_{i=1}^n c_i^2}\right), \text{ and }$$

2.
$$\Pr\left[f(S) - \mathbb{E}[f(S)] \le -\epsilon\right] \le \exp\left(\frac{-2\epsilon^2}{\sum_{i=1}^n c_i^2}\right).$$

Proof: Generalization Bound for Binary Classification

Update our notation for empirical cost to indicate the dataset:

$$\hat{C}_{\mathcal{D}}(f) = \frac{1}{n} \sum_{i=1}^{n} \operatorname{cost}(f(\mathbf{x}_i), y_i)$$

Define $\Phi(\mathcal{D})$ as the maximum difference between the true cost of a predictor and the empirical cost on dataset \mathcal{D} :

$$\Phi(\mathcal{D}) \doteq \max_{f \in \mathcal{F}} C(f) - \hat{C}_{\mathcal{D}}(f)$$

(A bit sloppy; should really use $\sup_{f \in \mathcal{F}}$)

Proof (2): Bounding $\Phi(\mathcal{D}) - \Phi(\mathcal{D}')$

Let \mathscr{D} and \mathscr{D}' be two datasets of n observations that differ in **exactly one** datapoint: $(x_k, y_k) \neq (x_k', y_k')$, and $(x_i, y_i) = (x_i', y_i')$ for all $i \neq k$

$$\begin{split} \Phi(\mathcal{D}) - \Phi(\mathcal{D}') &= \left(\max_{f \in \mathcal{F}} C(f) - \hat{C}_{\mathcal{D}}(f) \right) - \left(\max_{g \in \mathcal{F}} C(g) - \hat{C}_{\mathcal{D}}(g) \right) \\ &\leq \max_{f \in \mathcal{F}} \left(C(f) - \hat{C}_{\mathcal{D}}(f) \right) - \left(C(f) - \hat{C}_{\mathcal{D}}(f) \right) \\ &= \max_{f \in \mathcal{F}} C(f) - \hat{C}_{\mathcal{D}}(f) - C(f) + \hat{C}_{\mathcal{D}}(f) \\ &= \max_{f \in \mathcal{F}} \hat{C}_{\mathcal{D}'}(f) - \hat{C}_{\mathcal{D}}(f) \end{split}$$

Proof (3): Bounding $\Phi(\mathcal{D}) - \Phi(\mathcal{D}')$

$$\begin{split} \Phi(\mathcal{D}) - \Phi(\mathcal{D}') &\leq \max_{f \in \mathcal{F}} \hat{C}_{\mathcal{D}'}(f) - \hat{C}_{\mathcal{D}}(f) \\ &= \max_{f \in \mathcal{F}} \sum_{i=1}^{n} \frac{\cot(f(x_i), y_i) - \cot(f(x_i'), y_i')}{n} \\ &= \max_{f \in \mathcal{F}} \frac{\cot\left(f(x_k), y_k\right) - \cot\left(f(x_k'), y_k'\right)}{n} = \frac{1}{n} \end{split}$$

By an identical argument, $\Phi(\mathcal{D}') - \Phi(\mathcal{D}) \leq 1/n$. So

$$\left|\Phi(\mathcal{D}) - \Phi(\mathcal{D}')\right| \leq \frac{1}{n}$$

Proof (4):

Bounding $\Phi(\mathcal{D})$

$$\left|\Phi(\mathcal{D}) - \Phi(\mathcal{D}')\right| \leq \frac{1}{n}$$

Apply McDiarmid's Inequality:

$$\Pr\left[\Phi(\mathcal{D}) - \mathbb{E}[\Phi(\mathcal{D})] \ge \epsilon\right] \le \exp\left(\frac{-2\epsilon^2}{\sum_{i=1}^n 1/n^2}\right)$$

$$= \exp(-2n\epsilon^2) = \delta$$

$$\Pr\left[\Phi(\mathcal{D}) - \mathbb{E}[\Phi(\mathcal{D})] \ge \sqrt{\frac{\log 1/\delta}{2n}}\right] \le \delta$$

$$\Pr\left[\Phi(\mathcal{D}) \le \mathbb{E}[\Phi(\mathcal{D})] + \sqrt{\frac{\log 1/\delta}{2n}}\right] \ge 1 - \delta$$

$$\sum_{i=1}^{n} \frac{1}{n^2} = n \frac{1}{n^2} = \frac{1}{n}$$

$$\delta = \exp(-2n\epsilon^2)$$

$$\iff \log \delta = -2n\epsilon^2$$

$$\iff \frac{-\log \delta}{2n} = \epsilon^2$$

$$\iff \epsilon = \sqrt{\frac{\log 1/\delta}{2n}}$$

Proof (5): Bounding $\mathbb{E}[\Phi(\mathcal{D})]$

With probability
$$1 - \delta$$
, we have $\Phi(\mathcal{D}) \leq \mathbb{E}[\Phi(\mathcal{D})] + \sqrt{\frac{\log 1/\delta}{2n}}$.

$$\mathbb{E}[\Phi(\mathcal{D})] = \mathbb{E}_{\mathcal{D}} \left[\max_{f \in \mathcal{F}} C(f) - \hat{C}_{\mathcal{D}}(f) \right]$$

$$= \mathbb{E}_{\mathscr{D}} \left[\max_{f \in \mathscr{F}} \mathbb{E}_{\mathscr{D}'} \left[\hat{C}_{\mathscr{D}'}(f) - \hat{C}_{\mathscr{D}}(f) \right] \right]$$

$$\leq \mathbb{E}_{\mathcal{D},\mathcal{D}'} \left[\max_{f \in \mathcal{F}} \hat{C}_{\mathcal{D}'}(f) - \hat{C}_{\mathcal{D}}(f) \right] \angle$$

$$= \mathbb{E}_{\mathcal{D},\mathcal{D}'} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left(\operatorname{cost}(f(x_i), y_i) - \operatorname{cost}(f(x_i'), y_i') \right) \right]$$

Jensen's inequality

For any convex function

$$f: \mathcal{X} \to \mathbb{R}$$

$$f(\mathbb{E}[X]) \le \mathbb{E}[f(X)]$$

→ (max is a convex function)

Proof (6): Bounding $\mathbb{E}[\Phi(\mathcal{D})]$

$$\mathbb{E}_{\mathscr{D}}[\Phi(\mathscr{D})] \leq \mathbb{E}_{\mathscr{D},\mathscr{D}'} \left[\max_{f \in \mathscr{F}} \frac{1}{n} \sum_{i=1}^{n} \left(\operatorname{cost}(f(x_i), y_i) - \operatorname{cost}(f(x_i'), y_i') \right) \right]$$

$$= \mathbb{E}_{\mathscr{D},\mathscr{D}',\sigma} \left[\max_{f \in \mathscr{F}} \frac{1}{n} \sum_{i=1}^{n} \frac{\sigma_i}{\sigma_i} \left(\operatorname{cost}(f(x_i), y_i) - \operatorname{cost}(f(x_i'), y_i') \right) \right]$$

$$\leq \mathbb{E}_{\mathscr{D},\mathscr{D}',\sigma} \left[\left(\max_{f \in \mathscr{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i \operatorname{cost}(f(x_i), y_i) \right) + \left(\max_{f \in \mathscr{F}} \frac{1}{n} \sum_{i=1}^{n} - \sigma_i \operatorname{cost}(f(x_i'), y_i') \right) \right]$$

$$= \mathbb{E}_{\mathcal{D},\sigma} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i \operatorname{cost}(f(x_i), y_i) \right] + \mathbb{E}_{\mathcal{D}',\sigma} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} -\sigma_i \operatorname{cost}(f(x_i'), y_i') \right]$$

Proof (7): Bounding $\mathbb{E}[\Phi(\mathcal{D})]$

$$\begin{split} \mathbb{E}_{\mathcal{D}}[\Phi(\mathcal{D})] &\leq \mathbb{E}_{\mathcal{D},\sigma} \left[\max_{j \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \operatorname{cost}(f(x_{i}), y_{i}) \right] + \mathbb{E}_{\mathcal{D}',\sigma} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} - \sigma_{i} \operatorname{cost}(f(x_{i}'), y_{i}') \right] \\ &= 2\mathbb{E}_{\mathcal{D},\sigma} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \operatorname{cost}(f(x_{i}), y_{i}) \right] \\ &= 2\mathbb{E}_{\mathcal{D},\sigma} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} (1 - I_{f(x_{i}) = y_{i}}) \right] \\ &= 2\mathbb{E}_{\mathcal{D},\sigma} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \frac{1 - y_{i} f(x_{i})}{2} \right] \\ &= 2\frac{1}{2}\mathbb{E}_{\mathcal{D},\sigma} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \right] + \frac{1}{2}2\mathbb{E}_{\mathcal{D},\sigma} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} - y_{i} f(x_{i}) \right] \\ &= \mathbb{E}_{\mathcal{D},\sigma} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f(x_{i}) \right] = \mathbb{E}_{\mathcal{D}} \left[\mathbb{E}_{\sigma} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f(x_{i}) \right] \right] \\ &= \mathbb{E}_{\mathcal{D}} \left[\hat{R}_{\mathcal{D}}(\mathcal{F}) \right] = \mathbb{E}_{\mathcal{D}} \left[\hat{R}_{\mathcal{D}}(\mathcal{F}) \right] \end{split}$$

Proof: Putting it all together

1. With probability
$$1 - \delta$$
, we have $\Phi(\mathcal{D}) \leq \mathbb{E}[\Phi(\mathcal{D})] + \sqrt{\frac{\log 1/\delta}{2n}}$

- 2. $\mathbb{E}_{\mathcal{D}}[\Phi(\mathcal{D})] \leq R_n(\mathcal{F})$
- 3. With probability 1δ ,

$$\Phi(\mathcal{D}) \le R_n(\mathcal{F}) + \sqrt{\frac{\log 1/\delta}{2n}}$$

$$\max_{f \in \mathcal{F}} C(f) - \hat{C}_{\mathcal{D}}(f) \le R_n(\mathcal{F}) + \sqrt{\frac{\log 1/\delta}{2n}}$$

$$C(f) \le \hat{C}_{\mathcal{D}}(f) + R_n(\mathcal{F}) + \sqrt{\frac{\log 1/\delta}{2n}}, \quad \forall f \in \mathcal{F}. \blacksquare$$

Summary

- McDiarmid's Inequality is a generalization of Hoeffding's Inequality for "stable enough" functions
- We can use McDiarmid's Inequality to prove upper bounds on generalization performance such as (for binary classification)

$$C(f) \le \hat{C}_{\mathcal{D}}(f) + R_n(\mathcal{F}) + \sqrt{\frac{\log 1/\delta}{2n}}, \quad \forall f \in \mathcal{F}$$

- Bounds of this kind shed light on the relationship between training error and generalization error
 - The more flexible your hypothesis class (larger $R_n(\mathscr{F})$), the bigger the difference can be
 - This difference is the origin of overfitting