Generalization Bounds

CMPUT 296: Basics of Machine Learning

Textbook Ch.12

Logistics

- Midterm **spot checks** have been scheduled
- Thought questions #4 due Thursday (Nov 26)
- Anything between logistic regression and generalization bounds is fair game Last class will be on Tuesday (Dec 1)

Outline

- 1. Recap & Logistics
- 2. Empirical Error
- 3. Measuring Hypothesis Class Size
- 4. Generalization Bounds

Recap: Optimal Prediction

to make predictions in a classification problem.

$$\mathbb{E}[C(f)] = \int_{\mathcal{X}} \sum_{y \in \mathcal{Y}} \operatorname{cost} \left(f(\mathbf{x}), y \right) p(\mathbf{x}, y) \, d\mathbf{x},$$

where $cost(\hat{y}, y)$ is the cost for predicting \hat{y} when the true value is y, and $C(f) = \cot(f(X), Y)$ is a random variable.

- Suppose we know the true joint distribution $p(\mathbf{x}, y)$, and we want to use it
- The **optimal classification predictor** makes the **best** use of this function.
- As with the optimal estimator, we measure the quality of a predictor $f(\mathbf{x})$ by its expected cost $\mathbb{E}[C(f)]$. The optimal predictor minimizes $\mathbb{E}[C(f)]$.

Empirical Error Estimation

- We can't actually measure generalization error
- But we can estimate it with the empirical error on a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i) \mid 1 \le i \le n\}$:

$$\hat{C}(f) = \frac{1}{n}$$

The empirical error is an **unbiased estimator** for the generalization error: •

Question: Doesn't this conflict with "don't use the training set to estimate generalization error?"

 $C(f) = \mathbb{E}\left[\operatorname{cost}(f(\mathbf{X}), Y)\right]$

$$\sum_{i=1}^{n} \operatorname{cost} \left(f(\mathbf{x}_{i}), y_{i} \right)$$

$$\mathbb{E}\left[\hat{C}(f)\right] = C(f)$$

Empirical Risk Minimization

 $\hat{f}_{\text{FRM}} =$

E.g., ordinary least squares minimizes the empirical squared cost over the linear hypothesis class $\mathcal{F} = \{f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} \mid \mathbf{w} \in \mathbb{R}^d\}$:

> $w_{OLS} = \arg m$ we

Since $\hat{C}(f)$ is a consistent estimator for our target C(f), one strategy is to minimize this estimator directly. This is called empirical risk minimization:

$$\arg\min_{f\in\mathscr{F}} \hat{C}(f)$$

$$\inf_{i=1}^{n} \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{w}^{\mathsf{T}} \mathbf{x})^2$$

Recap: Bias vs. Variance

$$\mathbb{E}\left[\left(f_{\mathcal{D}}(X) - f^{*}(X)\right)^{2}\right] = \left(\mathbb{E}\left[f_{\mathcal{D}}(X)\right] - f^{*}(X)\right)^{2} + \operatorname{Var}\left[f_{\mathcal{D}}(X)\right]$$

- •
- lacksquare
- dataset \mathscr{D} (so when we treat \mathscr{D} as a random variable, $f_{\mathscr{D}}$ is also random)
- \bullet

 - "Smaller" hypothesis class: More bias, because it can only fit some functions

We can decompose the reducible error into bias and variance of the predictions Note that $f^*(X)$ is the optimal predictor; it need not be part of our hypothesis class

• $f_{\mathcal{D}}(X)$ is the predictor that will be chosen from our hypothesis class based on the

Choosing a different hypothesis class can change both the bias and variance of $f_{\mathcal{D}}$

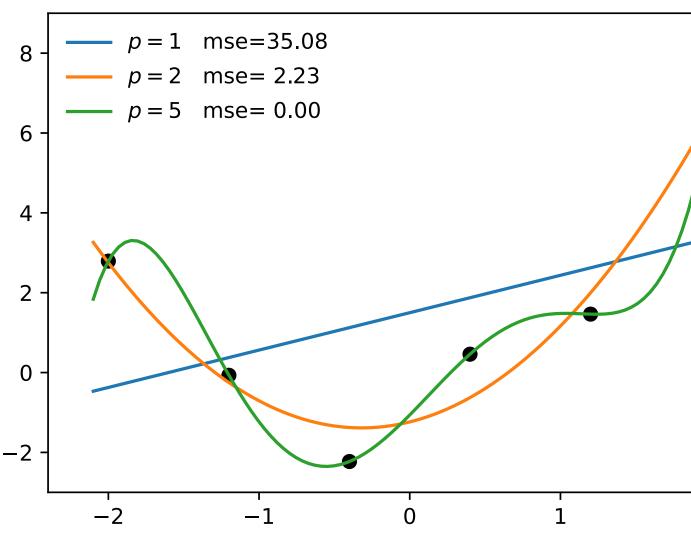
• "Bigger" hypothesis class: More variance, because it can fit a dataset in more ways

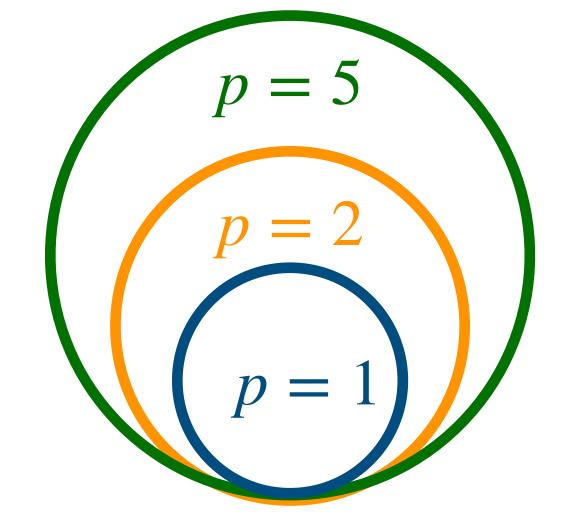
- How can you choose a hypothesis class?
- **Lecture 15 approach:** Cross-validation to choose a hypothesis class:
 - 1. Perform k-fold cross-validation for p-degree polynomial regression for all $1 \le p \le P$
 - 2. Let p^* be the p that minimizes the estimated generalization error
 - 3. Fit a p^* -degree polynomial on the full training dataset
- **This lecture:** compute an **upper bound** on the error of a predictor \bullet
 - Then choose hypothesis class to minimize that upper bound

Bounding vs. Cross-Validation

Quantifying the "Size" of a Hypothesis Class

- We know that the class of quadratic functions is "bigger" than the class of linear functions, because it is a superset of the linear functions
- But can we put a number on this difference?
- This is *not* about counting the number of hypotheses contained in the class (why?)
 - (They are both infinite!)
- How much more expressive is the class of quadratic hypotheses than the class of linear hypotheses?





Empirical Rademacher Complexity

The **empirical Rademacher complexity** of \mathcal{F} with respect to \mathcal{D} is

where

- $\mathcal{D} = \{(\mathbf{x}_i, y_i) \mid 1 \le i \le n\}$ is a dataset
- ("Rademacher variables")
- \mathcal{F} is a hypothesis class
- \bullet random noise by choosing a hypothesis from \mathcal{F} .
- they have more functions to choose from.

$$\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i f(x_i)$$

Question: What is the expectation taken over?

• $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n)$ is a vector of *n* random variables, with $\sigma_i \stackrel{i.i.d}{\sim}$ Uniform $\{-1, +1\}$

Intuitively, the Rademacher complexity measures how well we can correlate with

• More complex hypothesis classes can better correlate with random noise, because

Rademacher Complexity

The **Rademacher complexity** of a hypothesis class \mathcal{F} is the expected empirical Rademacher complexity over all datasets \mathcal{D} (of size *n*): $R_n(\mathcal{F}) =$

- The empirical Rademacher complexity is with respect to a single, fixed dataset
- The Rademacher complexity is with respect to the **distribution** of datasets
 - Note that the Rademacher complexity of a hypothesis class can differ depending on the data distribution!

$$= \mathbb{E}\left[\hat{R}_{\mathscr{D}}(\mathscr{F})\right]$$

Question: What is the expectation taken over?



Example: (n - 1)-Degree Polynomial

$$\hat{R}_{\mathscr{D}}(\mathscr{F}) = \mathbb{E}$$

• Let $\mathscr{F} = \{f_{\mathbf{w}}(x) = w_0 + w_1 x \mid w_0, w_1 \in$

• Let
$$\mathcal{D} = \{(1, \mathbf{0}, \mathbf{0}), (2, \mathbf{0})\}$$
 Caveat: W

• What is $R_{\mathscr{D}}(\mathscr{F})$? This is usual

- We need to be able to make $f(x_i)$ very positive or very negative, depending on σ
- $R_{\mathscr{D}}(\mathscr{F}) = 2$ for the given dataset and hypothesis class
- Notice that we are now assuming that the weights are **bounded**
 - Question: What would the Rademacher complexity be for $\mathscr{F} = \{f_{\mathbf{w}}(x) = w_0 + w_1 x \mid \mathbf{w} \in \mathbb{R}^2\}$?

$$\begin{bmatrix} \max_{f \in \mathscr{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i f(x_i) \\ i = 1 \end{bmatrix}$$

Caveat: We will ignore y_i This is usually handled in a different way

σ1	σ1	w0	w1
-1	-1	1	-1
-1	+1	1	1
+1	-1	1	-1
+1	+1	1	1

Generalization Bound for a Hypothesis Class

Theorem:

Let \mathcal{F} be a family of binary classification functions taking values in $\{-1, +1\}$. Then for every $f \in \mathcal{F}$, and every $\delta > 0$,

$$C(f) \le \hat{C}(f) + R_n(\mathcal{F}) + q$$

with probability $1 - \delta$.

- *Idea:* Rather than optimizing C(f), optimize the whole RHS
- **Question:** What good would that do?

 $\log 1/\delta$

Questions: As *n* grows,

What happens to $R_n(\mathcal{F})$?

2. What happens to
$$\sqrt{\frac{\log 1/\delta}{2n}}$$
?

What happens to 3.

Summary

- "Larger" hypothesis classes have smaller bias, but larger variance
- Generalization error decomposes into bias and variance terms
 - We might prefer a "smaller" hypothesis class if we could reduce variance enough to make up for the increased bias
- Empirical Risk Minimization: directly optimize the loss on the training set
- Rademacher complexity: Measures the "size" of a hypothesis class by its ability to fit random noise
- We can upper bound generalization error by the sum of empirical cost, Rademacher complexity of the hypothesis class, and another term
 - This can help guide us in our decisions about which hypothesis class to use