(Generalization Bounds

CMPUT 296: Basics of Machine Learning
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 Midterm spot checks have been scheduled
 Thought questions #4 due Thursday (Nov 26)
* Anything between logistic regression and generalization bounds Is fair game

 Last class will be on Tuesday (Dec 1)
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Recap: Optimal Prediction

Suppose we know the true joint distribution p(X, y), and we want to use it
to make predictions in a classification problem.

The optimal classification predictor makes the best use of this function.

As with the optimal estimator, we measure the quality of a predictor f(X) by
its expected cost E|C(f)]. The optimal predictor minimizes [E[C(f)].

-[CON] = J ) cost (f(x), y) p(x,y) dx

L yey

where cost(y, y) is the cost for predicting ¥y when the true value is y,

and = cost (f(X), Y ) is a random variable.



Empirical error Estimation

 We can't actually measure generalization error
C(f) = E [cost(f(X), Y))

» But we can estimate it with the empirical error on adataset ¥ = {(X,,y) | | < i < n}:

n

N
COf) = ~ Z cost (f(x,), y;)

=1

* The empirical error is an unbiased estimator for the generalization error:

= |éin| = )

Question: Doesn't this conflict with "don't use the training set to estimate generalization error”?”




Empirical Risk Minimization

Since é( 1) is a consistent estimator for our target C(f), one strategy is to
Minimize this estimator directly. This is called empirical risk minimization:

A\

ferv = arg min C(f)

fe#

—.g., ordinary least squares minimizes the empirica\ squared cost over the
inear hypothesis class F# {f X)=w'x|wel d}:

1 - 2
WolLg = aIg min — (yl- — W X)

weR? n
=1




Recap: Blas vs. Variance

= | (f00 = £r00)°| = (E [00] —f*(X))2 + Var {f5,(X0)]

We can decompose the reducible error into bias and variance of the predictions

Note that f*(X) is the optimal predictor; it need not be part of our hypothesis class

J5(X) is the predictor that will be chosen from our hypothesis class based on the
dataset & (so when we treat & as a random variable, fg;, is also random)

Choosing a different hypothesis class can change both the bias and variance of f@

 "Bigger” hypothesis class: More variance, because it can fit a dataset in more ways

e "Smaller” hypothesis class: More bias, because it can only fit some functions



Bounding vs. Cross-Validation

« How can you choose a hypothesis class?

 Lecture 15 approach: Cross-validation to choose a hypothesis class:

1.

2.
3.

Perform k-fold cross-validation for p-degree polynomial regression
forall < p <P

Let p™ be the p that minimizes the estimated generalization error

-it a p™-degree polynomial on the full training dataset

* This lecture: compute an upper bound on the error of a predictor

* [hen choose hypothesis class to minimize that upper bound




Quantifying the "Size"

—— p=1 mse=35.08

of a Hypothesis Class

8

We know that the class of quadratic functions is P2 meem 2
"bigger” than the class of linear functions,
because It Is a superset of the linear functions .

But can we put a number on this difference?

This is not about counting the number of -2

hypotheses contained in the class (why?)
e (They are both infinite!)

How much more expressive Is the class of

guadratic hypotheses than the class of linear
hypotheses”? e




Empirical Rademacher Complexity

The empirical Rademacher complexity of # with respect to & is

Question: What is the
expectation taken over?

ﬁ@(f’ff) = [E [max—z(ff(x)

feFx n

where
e D ={(x,y) |1 <i< n}isadataset

» o0 =(0y,0,...,0,) is a vector of n random variables, with o; Umform{ 1,+ 1}
("Rademacher varlables")

e F is a hypothesis class

e |ntuitively, the Rademacher complexity measures how well we can correlate with
random noise by choosing a hypothesis from & .

 More complex hypothesis classes can better correlate with random noise, because
they have more functions to choose from.




Rademacher Complexity

The Rademacher complexity of a hypothesis class & is the expected
empirical Rademacher complexity over all datasets & (of size n):

R (#F)=1L [fe@(%)] Question: What is the
expectation taken over?

* [he empirical Rademacher complexity is with respect to a single, fixed dataset

 [he Rademacher complexity is with respect to the distribution of datasets

* Note that the Rademacher complexity of a hypothesis class can differ
depending on the data distribution!




Example: (n — 1)-Degree Polynomial

; I
RQZ(E/]') — L maX—ZGif(xi) - - 1 -1 |1 25

_________________________________________________________________________________________________

Lot F = {f,(X) = wy + wix |wp,wy e [-L,1% e e
+1 -1 1 -1 |25

Let <& = {(1’%) (2, x)} Caveat: We will ignore y; IR R -
What is Rg,(F)? This is usually handled in a different way

» We need to be able to make f(x;) very positive or very negative, depending on o

» Rg(F) = 2 for the given dataset and hypothesis class

Notice that we are now assuming that the weights are bounded

e Question: \What would the Rademacher complexity be for
F = {f,(x) = wy+wx | w € R*}?




(Generalization Bound for a
Hypothesis Class

Questions: As n grows,
Theorem:

Let F be a family of binary classification functions taking values in 1. What happens to R, ()7
{—1,+ 1}. Thenforevery f € &, and every 0 > 0,

2. What happens to

A log 1/6 log 1/6
C(f) <C(f)+R(F)+ ?
2n 2n
with probability 1 — . 3. What happens to

| C(f) — C(f)|?

+ Idea: Rather than optimizing C(f), optimize the whole RHS
* Question: \What good would that do?



Summary

* "Larger” hypothesis classes have smaller bias, but larger variance

 (Generalization error decomposes into bias and variance terms

* We might prefer a "smaller” hypothesis class if we could reduce variance
enough to make up for the increased bias

 Empirical Risk Minimization: directly optimize the loss on the training set

« Rademacher complexity: Measures the "size" of a hypothesis class by Its
abllity to fit random noise

* We can upper bound generalization error by the sum of empirical cost,
Rademacher complexity of the hypothesis class, and another term

* This can help guide us in our decisions about which hypothesis class to use



