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Logistics

• Midterm spot checks have been scheduled 

• Thought questions #4 due Thursday (Nov 26) 

• Anything between logistic regression and generalization bounds is fair game 

• Last class will be on Tuesday (Dec 1)
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Recap: Optimal Prediction
Suppose we know the true joint distribution , and we want to use it 
to make predictions in a classification problem. 

The optimal classification predictor makes the best use of this function. 

As with the optimal estimator, we measure the quality of a predictor  by 
its expected cost . The optimal predictor minimizes . 

, 

where  is the cost for predicting  when the true value is , 
and  is a random variable.

p(x, y)

f(x)
𝔼[C( f )] 𝔼[C( f )]

𝔼[C( f )] = ∫𝒳
∑
y∈𝒴

cost (f(x), y) p(x, y) dx

cost( ̂y, y) ̂y y
C( f ) = cost (f(X), Y)



Empirical Error Estimation
• We can't actually measure generalization error 

  

• But we can estimate it with the empirical error on a dataset : 

  

• The empirical error is an unbiased estimator for the generalization error: 

   

C( f ) = 𝔼 [cost( f(X), Y)]
𝒟 = {(xi, yi) ∣ 1 ≤ i ≤ n}

Ĉ( f ) =
1
n

n

∑
i=1

cost (f(xi), yi)

𝔼 [Ĉ( f )] = C( f )

Question: Doesn't this conflict with "don't use the training set to estimate generalization error?"



Empirical Risk Minimization
Since  is a consistent estimator for our target , one strategy is to 
minimize this estimator directly.  This is called empirical risk minimization: 

  

E.g., ordinary least squares minimizes the empirical squared cost over the 
linear hypothesis class : 

 

Ĉ( f ) C( f )

̂fERM = arg min
f∈ℱ

Ĉ( f )

ℱ = {fw(x) = w⊤x ∣ w ∈ ℝd}
wOLS = arg min

w∈ℝd

1
n

n

∑
i=1

(yi − w⊤x)2



Recap: Bias vs. Variance
  

• We can decompose the reducible error into bias and variance of the predictions 

• Note that  is the optimal predictor; it need not be part of our hypothesis class 

•  is the predictor that will be chosen from our hypothesis class based on the 
dataset   (so when we treat  as a random variable,  is also random) 

• Choosing a different hypothesis class can change both the bias and variance of  
• "Bigger" hypothesis class: More variance, because it can fit a dataset in more ways 
• "Smaller" hypothesis class: More bias, because it can only fit some functions

𝔼 [(f𝒟(X) − f*(X))2] = (𝔼 [f𝒟(X)] − f*(X))
2

+ Var [f𝒟(X)]

f*(X)

f𝒟(X)
𝒟 𝒟 f𝒟

f𝒟



Bounding vs. Cross-Validation
• How can you choose a hypothesis class? 

• Lecture 15 approach: Cross-validation to choose a hypothesis class: 

       

• This lecture: compute an upper bound on the error of a predictor 

• Then choose hypothesis class to minimize that upper bound

1. Perform -fold cross-validation for -degree polynomial regression 
for all  

2. Let  be the  that minimizes the estimated generalization error 

3. Fit a -degree polynomial on the full training dataset

k p
1 ≤ p ≤ P

p* p
p*



Quantifying the "Size" 
of a Hypothesis Class

p = 2

p = 5

p = 1

• We know that the class of quadratic functions is 
"bigger" than the class of linear functions, 
because it is a superset of the linear functions 

• But can we put a number on this difference? 

• This is not about counting the number of 
hypotheses contained in the class (why?) 

• (They are both infinite!) 

• How much more expressive is the class of 
quadratic hypotheses than the class of linear 
hypotheses?



Empirical Rademacher Complexity

• Intuitively, the Rademacher complexity measures how well we can correlate with 
random noise by choosing a hypothesis from . 

• More complex hypothesis classes can better correlate with random noise, because 
they have more functions to choose from.

ℱ

The empirical Rademacher complexity of  with respect to  is 

  

where 
•   is a dataset 

•    is a vector of  random variables, with   
("Rademacher variables") 

•  is a hypothesis class

ℱ 𝒟

R̂𝒟(ℱ) = 𝔼 [max
f∈ℱ

1
n

n

∑
i=1

σi f(xi)]
𝒟 = {(xi, yi) ∣ 1 ≤ i ≤ n}
σ = (σ1, σ2, …, σn) n σi

i.i.d∼ Uniform{−1, + 1}

ℱ

Question: What is the 
expectation taken over?



Rademacher Complexity

 

• The empirical Rademacher complexity is with respect to a single, fixed dataset 

• The Rademacher complexity is with respect to the distribution of datasets 

• Note that the Rademacher complexity of a hypothesis class can differ 
depending on the data distribution!

The Rademacher complexity of a hypothesis class  is the expected 
empirical Rademacher complexity over all datasets  (of size ): 

 

ℱ
𝒟 n

Rn(ℱ) = 𝔼 [R̂𝒟(ℱ)] Question: What is the 
expectation taken over?



Example: -Degree Polynomial(n − 1)
  

• Let  

• Let  

• What is ? 

• We need to be able to make  very positive or very negative, depending on  

•  for the given dataset and hypothesis class 

• Notice that we are now assuming that the weights are bounded 
• Question: What would the Rademacher complexity be for

?

R̂𝒟(ℱ) = 𝔼 [max
f∈ℱ

1
n

n

∑
i=1

σi f(xi)]
ℱ = {fw(x) = w0 + w1x ∣ w0, w1 ∈ [−1,1]}

𝒟 = {(1,0.4), (2, − 3)}
R𝒟(ℱ)

f(xi) σ

R𝒟(ℱ) = 2

ℱ = {fw(x) = w0 + w1x ∣ w ∈ ℝ2}

𝜎1 𝜎1 w0 w1 ∑f(x) 
/ 2

-1 -1 1 -1 2.5

-1 +1 1 1 1.5

+1 -1 1 -1 2.5

+1 +1 1 1 1.5Caveat: We will ignore 

This is usually handled in a different way

yi



Generalization Bound for a 
Hypothesis Class

Theorem: 
Let  be a family of binary classification functions taking values in 

.  Then for every , and every , 

  

with probability .

ℱ
{−1, + 1} f ∈ ℱ δ > 0

C( f ) ≤ Ĉ( f ) + Rn(ℱ) +
log 1/δ

2n

1 − δ

Questions: As  grows, 

1. What happens to ? 

2. What happens to 

? 

3. What happens to 
?

n

Rn(ℱ)

log 1/δ
2n

|C( f ) − Ĉ( f ) |

• Idea: Rather than optimizing , optimize the whole RHS 
• Question: What good would that do?

Ĉ( f )



Summary
• "Larger" hypothesis classes have smaller bias, but larger variance 
• Generalization error decomposes into bias and variance terms 

• We might prefer a "smaller" hypothesis class if we could reduce variance 
enough to make up for the increased bias 

• Empirical Risk Minimization: directly optimize the loss on the training set 
• Rademacher complexity: Measures the "size" of a hypothesis class by its 

ability to fit random noise 
• We can upper bound generalization error by the sum of empirical cost, 

Rademacher complexity of the hypothesis class, and another term 
• This can help guide us in our decisions about which hypothesis class to use


