
Monte Carlo Estimation

CMPUT 296: Basics of Machine Learning 
 



Midterm Results

• The midterm average was 93 / 130  (72%) 

• Highest grade was 122 / 130 (94%) 

• The TAs and I will be contacting some of you tomorrow to schedule 
spot checks



Recap: Bayesian Estimation

 

• The MAP, MLE, and Bayes estimators for a model parameter are all point 
estimates 

• MAP and MLE can be computed without computing  

• Conjugate priors make it possible to perform Bayesian updates analytically 

• But many models don't have conjugate priors

Bayes' Rule:  p(θ ∣ 𝒟) =
p(𝒟 ∣ θ)p(θ)

p(𝒟)
=

p(𝒟 ∣ θ)p(θ)
∫

Θ
p(𝒟 ∣ θ)p(θ) dθ

p(𝒟)



Lecture Outline

1. Recap & Logistics 

2. Hierarchical Bayesian Models 

3. Estimation via Sampling 

4. Sampling from Hard-to-Sample Distributions



Hierarchical Models
• Common approach in probabilistic modeling: hierarchical models 

• Each individual acts according to a unique individual distribution 

• The individual distributions' parameters are drawn from a single, shared distribution 

• The shared distribution's parameter has a prior 

• Two kinds of estimation: 

1. What is the parameter of the shared distribution? 

2. What is the parameter for a given individual? 

Question: Is this kind of model useful even if we only care about question 2?



Hierarchical Models  
Example: Modeling Game Play

• We have  games , and  players 

• Each player  has a "level"  that represents their strategic reasoning ability 

• Each player  has taken an action  in each game  according to a 
distribution calculated by   (where  is a complicated function) 

• Levels are distributed according to a  distribution with unknown 
parameter  

• Our prior on  is uniform between  and 

m G1, …, Gm n

i ki

i aij Gj
f(aij, Gj, ki) f

Poisson(λ)
λ

λ 0 10



Hierarchical Game Play Model
 

         

 

 

 

Question: How can we find the posterior distribution over ?

𝒟 = {(aij, Gj) ∣ 1 ≤ i ≤ n,1 ≤ j ≤ m}

λ ∼ Uniform[0,10] ki ∼ Poisson(λ) p(aij ∣ Gj) = f(aij, Gj, ki)

p(𝒟 ∣ λ, k1, …, kn) =
n

∏
i=1

m

∏
j=1

p(aij ∣ Gj, ki) =
n

∏
i=1

m

∏
j=1

f(aij, Gj, ki)

p(k1, …, kn ∣ λ) =
n

∏
i=1

p(ki ∣ λ) =
n

∏
i=1

λkie−λ

ki!

p(λ) = I0≤λ≤10[λ]
1
10

ki



Posterior Distribution of ki
 

 

 

 

p(λ, k1, …, ki, …, kn ∣ 𝒟) =
p(𝒟 ∣ λ, k1, …, kn)p(λ, k1, …, kn)

p(𝒟)

=
p(𝒟 ∣ λ, k1, …, kn)p(k1, …, kn ∣ λ)p(λ)

p(𝒟)

=
p(𝒟 ∣ λ, k1, …, kn)p(k1, …, kn ∣ λ)p(λ)

∫
[0,10]×ℕn p(𝒟 ∣ λ, k1, …, kn)p(k1, …, kn ∣ λ)p(λ) dλdk1…dkn

p(ki ∣ 𝒟) =

∫[0,10]×ℕk−1

p(𝒟 ∣ λ, k1, …, kn)p(k1, …, kn ∣ λ)p(λ)
∫

[0,10]×ℕn p(𝒟 ∣ λ, k1, …, kn)p(k1, …, kn ∣ λ)p(λ) dλdk1…dkn
dλdk1…dki−1dki+1…dkn

OK

Problem #1: 

Normalizing constant

Problem #2: Marginalization

Bayes' rule

Chain rule

Marginalize

Marginalize

OK



Estimating ki
1. MLE  

• We can compute  

• So "just" find its gradient, and then find  

2. MAP  
• We can compute  

• We don't know what  is, but we know it's constant (with respect to 
) 

• So  

3. Bayesian estimate (i.e., ) 

• We can compute 

p(𝒟 ∣ λ, k1, …, kn)
arg max

λ,k1,…,kn

p(𝒟 ∣ λ, k1, …, kn)

p(λ, k1, …, kn ∣ 𝒟)p(𝒟)
p(𝒟)

λ, k1, …, kn

arg max
λ,k1,…,kn

p(λ, k1, …, kn ∣ 𝒟) = arg max
λ,k1,…,kn

p(λ, k1, …, kn ∣ 𝒟)p(𝒟)

𝔼[ki ∣ 𝒟]
q(λ, k1, …, kn) ∝ p(λ, k1, …, kn ∣ 𝒟)



Grid Search
Bayesian estimate (i.e., ) 

• We can compute  

• Question: If there were only 9 possible values of , what could we do to 
compute ? 

• Grid search is exhaustively computing  over a finite "grid" of candidate 
values, and then dividing by the sum 

• Implicit assumption: Only the grid values have positive probability 

• The 's are already discrete, and it turns out to be reasonable to assume  

• Question: How many possible values for the vector  under that assumption? 

• "Curse of dimensionality": A typical experiment in this domain has 40 players

𝔼[ki ∣ 𝒟]
q(λ, k1, …, kn) ∝ p(λ, k1, …, kn ∣ 𝒟)

λ, k1, …, kn
p(λ, k1, …, kn ∣ 𝒟)

q(λ, k1, …, kn)

ki ki ∈ {0,1,2,3}

(k1, …, kn)

≥



Recap: Expectations from a Sample
Law of Large Numbers: 
As the number  of independent samples  from a random variable  with 
distribution  approaches infinity, the sample average approaches the expected value of . 

  

Since  is also a random variable, this generalizes to arbitrary functions of : 

  

R x(1), …, x(R) X
p(x) X

𝔼[X] = ∫𝒳
xp(x) dx ≈

1
R

R

∑
r=1

x(r)

Y = h(X) X

𝔼[h(X)] = ∫𝒳
h(x)p(x) dx ≈

1
n

R

∑
r=1

h(x(r))

If we can generate independent samples from a random variable's distribution, we 
can estimate the expected value of arbitrary functions of the random variable!



Probabilities from a Sample
• Question: Why might we want to estimate the probability of an event? 

• Probability of an event  is just the expectation of its indicator function: 

  

• So estimate that expectation as with any other function: 

. 

A

IA[x] = {1 if x ∈ A,
0 otherwise.

Pr(A) = 𝔼 (IA[X]) = ∫𝒳
IA[x]p(x) dx ≈

1
R

R

∑
r=1

IA[x(r)]

e.g., IX>4[x] = {1 if x > 4,
0 otherwise.



Marginals from Multivariate Samples
• In our example model,  

• Question: How can we estimate the value of just ? 

• Given a sample , let  be the projection function 

  

• Then the expectation of  is the expectation of the projection  of  

• Estimate that expectation as with any other function: 

 

θ = (λ, k1, …, kn)

𝔼[ki ∣ 𝒟]

θ(r) = (λ(r), k(r)
1 , …, k(r)

n ) hki

hki
(θ(r)) = k(r)

i

ki hki
θ

𝔼[ki ∣ 𝒟] = 𝔼[hki
(θ) ∣ 𝒟] = ∫Θ

hki
(θ)p(θ ∣ 𝒟) dθ ≈

1
R

R

∑
r=1

hki
(θ(r))



Generating Samples from a  
Single Variable

How can we generate samples from a distribution? 

1. Totally order the domain of the variable 
(can be arbitrary for categorical variables) 

2. Cumulative distribution:  

  

3. Select a uniform random number  

4. Return 

F(x) = Pr(X ≤ x)

F(x) = ∫
x

−∞
f(z)dz F(x) = ∑

x′ ≤x

f(x′ )

y ∈ [0,1]

x(r) = F−1(y)

F(x)

f(x)



Hard-To-Sample Distributions
Often, we want to sample from distributions that are hard to sample from, 
especially large joint distributions 

Question: Why might a distribution be hard to sample from? 

1. Use samples from easier distributions: 

• Rejection Sampling 

• Importance Sampling 

2. Go piece by piece through the joint distribution 

• Forward Sampling in a hierarchical model 

• Particle Filtering



Proposal Distributions
• Can we use an easy-to-sample distribution  to help us sample from ? 

• Very common: We know an unnormalized , but not the properly normalized 
distribution : 

  

• Typically,  and  

•  is the target distribution 

•  is the unnormalized target distribution 

•  is the proposal distribution

g(x) f(x)

q(x)
f(x) ∝ q(x)

f(x) =
q(x)

∫
𝒳

q(x) dz

q(θ) = p(𝒟 ∣ θ)p(θ) f(θ) = p(θ ∣ 𝒟) = q(θ)/p(𝒟)

f(x)

q(x)

g(x)



Rejection Sampling
• Rejection sampling is one way to use a proposal 

distribution to sample from a target distribution 

• Assumption: We know a constant  such that  

  

• Much easier to find  than to find the constant that 
makes the integral come out to exactly 1 

• Repeat until "enough" samples accepted: 

1. Sample  from the proposal distribution 

2. Sample   

3. If , accept  (add it to samples) 

Else reject

M

∀x : Mq(x) ≤ g(x)

M

x ∼ g(x)

u ∼ Uniform[0,1]

u ≤ [Mq(x) / g(x)] x

u

x

Mq(x) g(x)



Importance Sampling
• Rejection sampling works, but it can be wasteful 

• Lots of samples get rejected when proposal and 
target distributions are very different 

• What if we took a weighted average instead? 

1. Sample  from  

2. Weight each sample  by  

3. Estimate is  

x(1), x(2), …, x(R) g(x)

x(r) w(r) =
Mq(x(r))
g(x(r))

1

∑R
r=1 w(r) ∑

x(r)∼g

w(r)x(r)

 

 

 

𝔼[X] = ∑
x

f(x)x

= ∑
x

g(x)
g(x)

f(x)x

= ∑
x

g(x)
f(x)
g(x)

x

≈
1
R ∑

x(r)∼g

f(x(r))
g(x(r))

x(r)



Forward Sampling in a 
Factored Joint Distribution

• Sometimes we know how to sample parts of a large joint distribution in terms of 
other parts 

• We might be able to directly sample from each conditional distribution but not 
from the joint distribution 

• E.g., sample  and then  to get 
a sample from the joint prior  

Forward sampling: 

1. Select an ordering of variables consistent with the factoring 

2. Repeat until enough samples generated: 
    For each variable  in the ordering: 
        Sample 

λ ∼ Uniform[0,10] k(r)
1 , …, k(r)

n
i.i.d.∼ Poisson(λ(r))

p(λ, k1, …, kn)

Xi
x(r)

i ∼ P(Xi ∣ x(r)
1 , …, x(r)

i−1)



Particle Filtering
• Forward sampling generates a value for each variable, then moves on to the next sample 

• Particle filtering swaps the order: 

• Generate  values for variable , then  values for variable , etc. 

• Especially useful when there is no fixed number of variables (e.g., in sequential models) 

• Each sample is called a particle.  Update its weight each time a value is sampled. 

• Periodically resample from the particles with replacement, resetting weights to 1 

• High-probability particles likely to be duplicated 

• Low-probability particles likely to be discarded 

• Resampling means the particles cover the distribution better

R X1 R X2



Summary
• Often we cannot directly estimate probabilities or expectations from our model 

• E.g., hierarchical models with nonconjugate distributions 

• Monte Carlo estimates: Use a random sample from the distribution to estimate 
expectations by sample averages 

• Two families of techniques for hard to sample distributions: 

1. Use an easier-to-sample proposal distribution instead 

2. Sample parts of the model sequentially


