Monte Carlo Estimation

CMPUT 296: Basics of Machine Learning



Midterm Results

 The midterm average was 93 /130 (72%)

* Highest grade was 122 / 130 (94 %)

 The TAs and | will be contacting some of you tomorrow to schedule
spot checks



Recap: Bayesian Estimation

p(&|0)plO)  p(D|0)p0)

'Rule: p(0 | D) = ~ [ (D 000 do
Bayes' Rule: p(0 | &) (D) f@)p(@ | O)p(0) db

 The MAP, MLE, and Bayes estimators for a model parameter are all point
estimates

« MAP and MLE can be computed without computing p(9)

 Conjugate priors make it possible to perform Bayesian updates analytically

* But many models don't have conjugate priors
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Hierarchical Models

 Common approach in probabilistic modeling: hierarchical models

e Each individual acts according to a unigue individual distribution

* [he individual distributions’ parameters are drawn from a single, shared distribution

* [he shared distribution’s parameter has a prior

* Jwo Kinds of estimation:
1. What is the parameter of the shared distribution”
2. What is the parameter for a given individual

Question: Is this kind of model useful even if we only care about question 27



Hierarchical Models
Example: Modeling Game Play

We have m games Gy, ..., G,,, and n players
Each player 1 has a "level" kl- that represents their strategic reasoning ability

Each player 1 has taken an action a;; N each game Gj according to a

distribution calculated by f(aij, Gj, k:) (where fis a complicated function)

L evels are distributed according to a Poisson(A) distribution with unknown
parameter A

Our prior on A is uniform between 0 and 10



Hierarchical Game Play Model

P = {(a;,G) | 1 <i<nl <j<m)

A ~ Uniform[0,10]  k; ~ Poisson(4)  p(a;; | G;) = fla;;, G, k;)

P(D | Ak, .. k,) = ﬁﬁp(azj | Gj k) = ﬁﬁf(%‘» G;, k;)

i=1 j=1 i=1 j=1
n n Akie—ﬂ
plkyy ok, | 1) = Hp(ki | 2) = H ki!

|
p(4) = Ioszsm[/l]ﬁ

Question: How can we find the posterior distribution over £;?



Posterior Distribution of K;
sayes' e [p(AL Ky, sy ok | D))= m(ﬂ ki, - k)

p(D | Ak .. kplky, ..., k, | Afp(A) | ok
p(D)

p(D | Ak, ... k)plky, ...k, | Hp(d)
(D | Lk, .... k), ...k | Dp(d)didk,...dk, |~ Problem #1;

Normalizing constant

Chain rule —

Marginalize =

j[O,lO]xN"

Marginalize p(kl- | D) =

D | Akyy ..k )plky, ... k| ADp(A
J PDILK, - KIP | Ap4) dadk,...dk,_dk.. ...dk,
0,108 o 1onene P2 | Akt o k)p(ky, o Ky | Dp(2) dAdk, ... dk,

) XN /
\ Problem #2: Marginalization




Estimating k

» We can compute p(D | 4, k, ..., k)

So "just” find its gradient, and then find arg max p(9 | 4,k;, ..., k)
Lkp. ok,

2. MAP
» We can compute p(4, ki, ..., k, | D)p(D)

« We don't know what p(9) is, but we know it's constant (with respect to

Aokys .. k)

Soarg max p(A,ky,....k, | D) = arg max p(/l ki,....k, | D)p(D)
Ak, k Lk,

n

3. Bayesian estimate (i.e., E[k | D))
» We can compute g(4, ky, ..., k) x p(A, ki, ...k, | D)



GGrid Search

Bayesian estimate (i.e., E[k; | D)

» We can compute g(4, ky, ..., k,) < p(4, ki, ....k, | D)

» Question: If there were only 9 possible values of 4, ky, ..., k,, what could we do to
compute p(4, ki, ..., k, | 9)?

» Grid search is exhaustively computing g(4, ky, ..., k) over a finite "grid" of candidate
values, and then dividing by the sum

o Implicit assumption: Only the grid values have positive probability

» The k;'s are already discrete, and it turns out to be reasonable to assume k; € {0,1,2,3}
» Question: How many possible values for the vector (ky, ..., k,) under that assumption?

e "Curse of dimensionality": A typical experiment in this domain has >40 players



Recap: Expectations from a Sample

Law

of Large Numbers:

As the number R of independent sanr

distri

oution p(x) approaches infinity, t

ples x(l), el x"® from a random variable X with
ne sample average approaches the expected value of X.

| R
-[X]=J xp(x)dx ~ — Y x\

Since Y = h(X) is also a random variable, this generalizes to arbitrary functions of X

—[A(X)] =

R
J hOP() dx ~ — D h(x")
VA n r=1

If we can generate independent samples from a random variable's distribution, we
can estimate the expected value of arbitrary functions of the random variable!




Probabilities from a Sample

* Question: \Why might we want to estimate the probability of an event?

» Probability of an event A is just the expectation of its indicator function:

I4]x] = Lir e, &9 f>alx] = {(1) :t):\:rwte
0 otherwise. |

* SO estimate that expectation as with any other function:

Pr(A) = E (I,[X]) = [

1 R
[ dx ~ — I.[xM.
) AlxIp(x) dx 2 — ; X))



Marginals from Multivariate Samples

In our example model, 8 = (4, ky, ..., k,)

Question: How can we estimate the value of just E[k; | 2]7?

Given a sample 8 = (A1, kl(”), o k), et hy be the projection function

hki(g(r)) — ki(r)

hen the expectation of k; is the expectation of the projection hkl_ of @

—stimate that expectation as with any other function:

[k, | 2] = El (0) | 21 =J

1R
h (OpO| D)dO ~— Y h, (6N
I (Op(©12) Rz{ (07)



Generating samples from a
Single Variable

How can we generate samples from a distribution?

1. Totally order the domain of the variable
(can be arbitrary for categorical variables)

2. Cumulative distribution: F(x) = Pr(X < x) )
F(x) = J fRdz  F(x) = Zf(X’) I ‘ | i
— 0 x'<x 0 I

0
Vi Vo Vg Vg4 Vi Vo Vg Vy

3. Select a uniform random number y € [0,1]

4. Return x\) = F~1(y)



Hard-To-Sample Distributions

Often, we want to sample from distributions that are hard to sample from,
especially large joint distributions

Question: \Why might a distribution be hard to sample from?

1. Use samples from easier distributions:

* Rejection Sampling
* |mportance Sampling

2. Go piece by piece through the joint distribution

e Forward Sampling in a hierarchical model

* Particle Filtering



Proposal Distributions

 Can we use an easy-to-sample distribution g(x) to help us sample from f(x)?

 Very common: We know an unnormalized g(x), but not the properly normalized
distribution f(x) o g(x):

q(x)
| a(x)dz

+ Typically, g(8) = p(D | O)p(0) and f(0) = p(@ | D) = q(0) / p(D)

 f(x) is the target distribution

J(x) =

* g(x)is the unnormalized target distribution

e g(x) is the proposal distribution



Rejection Sampling

* Rejection sampling is one way to use a proposal
distribution to sample from a target distribution

= Mq(x) o ogix)

¢ Assumption: We know a constant M such that
Vx : Mg(x) < g(x)

* Much easier to find M than to find the constant that
makes the integral come out to exactly 1

* Repeat until "enough” samples accepted:
1. Sample x ~ g(x) from the proposal distribution

2. Sample u ~ Uniform[0,1]

3. Ifu< qu(x) / g(x)], accept x (add it to samples)

Else reject



mportance Sampling

* Rejection sampling works, but it can be wasteful

e [ots of samples get rejected when proposal and
target distributions are very different

* \What if we took a weighted average instead?

1. Sample x, x®), ..., x® from 2(x)

2. Weight each sample x(" by w =

3. Estimate is Z w5

Z W(’”) NON

[X] = ) flx

I o 1S)]
Z o




Forward Sampling in a
Factored Joint Distribution

 Sometimes we know how to sample parts of a large joint distribution in terms of
other parts

* We might be able to directly sample from each conditional distribution but not
from the joint distribution

. E.g., sample A ~ Uniform[0,10] and then kl(’” ) . k,(l’” ) Lid boisson(A7) to get
a sample from the joint prior p(4, ky, ..., k,)

Forward sampling:

1. Select an ordering of variables consistent with the factoring

2. Repeat until enough samples generated:
For each variable X: in the ordering:

Samplex(r)NP(X \x(r) (”))




Particle riltering

Forward sampling generates a value for each variable, then moves on to the next sample

Particle filtering swaps the order:

 Generate R values for variable X, then R values for variable X, etc.

» Especially useful when there is no fixed numlber of variables (e.qg., in sequential models)

—ach sample is called a particle. Update its weight each time a value is sampled.

Periodically resample from the particles with replacement, resetting weights to 1
* High-probabillity particles likely to be duplicated

o [ ow-probabillity particles likely to be discarded

Resampling means the particles cover the distribution better



Summary

* Often we cannot directly estimate probabilities or expectations from our model
 E.g., hierarchical models with nonconjugate distributions

* Monte Carlo estimates: Use a random sample from the distribution to estimate
expectations by sample averages

* [wo families of technigues for hard to sample distributions:
1. Use an easier-to-sample proposal distribution instead

2. Sample parts of the model sequentially



