(Generalized Linear Models

CMPUT 296: Basics of Machine Learning



| ogistics

e Midterms are marked

e (Grades and feedback available on eClass

* Thought questions #3 will be marked by Thursday

 Thought questions #4 due one week from Thursday (Nov 26)



Recap: Logistic Regression

* Linear binary classification: Learn a linear decision boundary

* All observations on one "side" of boundary are classified as O, all olbservations on the other
'side” are classified as 1

1 ifwlx>0
0 ifw/x<0

.e., f(X; W) = {

- Logistic regression: Learn a model p(y = 1 | X, w) = a(W'X)

» Logistic regression because we are learning a mapping from X to p(y = 1 | x)

|
1 + exp(—1)

. Logistic function o(?) = forces estimate to be a valid probability (i.e., in [0,1])

* No closed-form solution for MLE; must learn numerically (e.qg., SGD)

 MLE problem is convex; local optimum is also a global optimum



Outline

1. Recap & Logistics

2. Another Linear-ish Regression Scheme

3. Natural Exponential Family Distributions

4. (Generalized Linear Models



Probabllistic Approaches

We've now seen two probabillistic approaches to regression:

Linear Regression Logistic Regression
1. Ely|x]=w'x 1. E[y | x] = o(® 'x)
2. p(y | X) = N(u,c%) 2. p(y | X) = Bernoulli(ar)
3. u=w'x 3. a=o(w'x)

Question: \What do these two approaches have in common®?




—xample: Population Regression

Suppose we want to predict the number of sunny days per year in a city,
given some numerical features about the city (latitude and longitude).

Questions:
1. Can we directly apply linear regression to this problem®? \Why"?

2. Can we directly apply logistic regression to this problem? Why*?




=xponential [ransfer

The number of sunny days is both integer and positive

If we try to apply linear regression directly, our predictions will sometimes be negative
non-integers

If we try to apply logistic regression directly, our predictions will always be between 0
and 1 (and non-integer)

What if we replaced the sigmoid function with a different function that forces the
expected value to be positive?

ft)=exp(t) = 0L f(1) <
We can apply f to a linear weighting of features to get a positive expected value:

[y | x] = f(w'x)




POISSON Regression

We can use the exponential transfer function to define a Poisson model for
number of sunny days:

Poisson Regression
1. Ely | x] =flw x) = exp(w X)
2. p(y | X) = Poisson(4)
3. 1= flw'x)

» Poisson distribution's parameter A is both the mean and the variance
* Poisson distribution only places positive probability on integers



Poisson Regression: MLE Solution

AV exp(—A) eW Xy exp(—e" )

p(y | X, w = w) = Poisson(4) = '
y:

eV X exp(—e WXy )

y!

log p(y | x, w) = log = log eV ¥ 4 log exp (—eWTX) — log y!

y!
= w'xy — eV X — logy!

=
<
m

= argmax,, 2. logp(y; | x;, W)

n Tx.

- n Tx.
= argming, )7 e™ X — w'x;y,

There Is no closed-form solution to this optimization problem.

= arg max,, p(2 | w) = argmaxy, [ p(y; | x;, W)

Question: How can we find Wy £
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The natural exponential family of distributions are distributions with the form:
p(y | 0) = exp (Oy—a(O)+h(y))

» () is the parameter of the distribution

— |

'S the log-normalizer function

— |

IS the base measure function



Natural Exponential Family
Example: Poisson

p(y | ) = exp (Oy—a(O)+1(y))

e ™
1
= exp (log /ly) exp(—A)exp (log —'>
y!

1
= exp (log A — A+ log —'>
y!

= exp (ylog/l — A )

0 =log A
a(@) = exp(d) = 1

(y) = —logy!




Natural Exponential Family
=xample: Bernoulll

p(y | ) = exp (Oy—a(O)+1(y))

p(y|la)=a’(1—a)'™ = exp (y log . log(1 — a))
o
= 1
(1 —a)y-l = exp (ylog 1fa—log 1—05)
o’
= (1 —a)
—a)y
(1-a) y 0 = log -
* 1l —«
= (1 —a)
l —a

a(@) =log (1 + exp()) = log

1
a \° l —«a
exp 10g<1_a> + log(1 — a) () = 0




Natural Exponential Family
Example: Gaussian with o = 1

p(y | 0) = exp (Oy—a(O)+1(y))

piy | u) =

1

\/127 exp (—E(y — /4)2) = exp <log \lﬁ ) exp (—%(y //t)z)
Nor

y _ exp

(10g 1 )p< L WW)
exp(log\lr)exp(_'u t 24y y)

Ky 'uz'
2




| 0g-Normalizer

p(y | 0) = exp (Oy—a(@)+H(y))

The log-normalizer ensures that the probability density integrates to 1:

a(0) = log z where z = J exp(fy + b(y)) dy, so
4

[ exp(fy — a(0) + b(y)) dy = J exp(fy — logz + b(y)) dy
Y Y

= J exp(fy + b(y)) dy
exp(log z) o

1
 J, exp(@y + b(y) dy

[ exp(@y + b(y)dy = 1
Y

Properties
da(0)
= E[Y]
00
0°a(@
al®) _ VY]
007




(Generalized Linear Models

Linear Regression Logistic Regression Poisson Regression
1. Ely|x]=w'x 1. Ely|x] =o(w'x) 1. Ely|x] =flw'x) =exp(w ' X)
2. p(y|x)=N(u,6°) 2. p(y]|x)=Bernoulli(a) 2. p(y | X) = Poisson(4)
3. u=w'x 3. a=ow'x) 3. A=fw'x)

e Linear, logistic, and Poisson regression are all generalized linear models

* A generalized linear model is a model where

1. E[y | x] =f(w'x)

2. p(y | X) is an exponential family distribution

» The transfer function fis typically the derivative of the log-normalizer of p

e |.e., the transfer function and the distribution family are chosen together



Solving Generalized Linear Models

* Question: Can we analytically solve GLMs?

 GLMs are typically solved using (stochastic) gradient descent:

p(y | ) = exp (Oy—a(O)+1(y))
logp(y | 0) = 0y — a(0) + b(y)

arg max log p(y | ) = arg max 8y — a(0) + b(y)

— arg max WTxy — CZ(WTX) o T
w

= arg min a(w'X) — w'xy
W



Solving GLMs (2)

arg min c(w) = arg mina(w'x,) — w'xy.
oc(w 0
A (a(wTx) — wxy;)
da(w'x) Ow'x.y, So the stochastic gradient descent
— 3 3 update would be:
_ T
da(w'x)) ow'xy. \ ow'x, Wir1 = W = Iy (f (W'X) =Y i) X
N aWTXi aWTXl' W]

= (/ft (WTXi) — yl‘)xij



Summary

Linear and logistic regression are both generalized linear models

e S0 Is Poisson regression

A generalized linear model is a model where:

1. E[y | x] =f(w'x)

2. p(y | X) is an exponential family distribution

An exponential family distribution is a distribution that can expressed as

p(y | 0) = exp (Oy—a(O)+(y))

oa
The transfer function for a GLM is typically f = —

00



