
Generalized Linear Models
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Machine Learning Handbook Ch.7



Logistics

• Midterms are marked 

• Grades and feedback available on eClass 

• Thought questions #3 will be marked by Thursday 

• Thought questions #4 due one week from Thursday (Nov 26)



Recap: Logistic Regression
• Linear binary classification: Learn a linear decision boundary  

• All observations on one "side" of boundary are classified as 0, all observations on the other 
"side" are classified as 1 

i.e.,   

• Logistic regression: Learn a model  

• Logistic regression because we are learning a mapping from  to  

• Logistic function  forces estimate to be a valid probability (i.e., in ) 

• No closed-form solution for MLE; must learn numerically (e.g., SGD) 
• MLE problem is convex; local optimum is also a global optimum

f(x; w) = {1 if wTx > 0
0 if wTx ≤ 0

p(y = 1 ∣ x, w) = σ(wTx)

x p(y = 1 ∣ x)

σ(t) = 1
1 + exp(−t) [0,1]
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Probabilistic Approaches
We've now seen two probabilistic approaches to regression:

Logistic Regression 

1.  

2.  

3.

𝔼[y ∣ x] = σ(ω⊤x)
p(y ∣ x) = Bernoulli(α)
α = σ(ω⊤x)

Linear Regression 

1.  

2.  

3.

𝔼[y ∣ x] = ω⊤x
p(y ∣ x) = 𝒩(μ, σ2)
μ = ω⊤x

Question: What do these two approaches have in common?



Example: Population Regression
Suppose we want to predict the number of sunny days per year in a city, 
given some numerical features about the city (latitude and longitude). 

Questions: 

1. Can we directly apply linear regression to this problem? Why? 

2. Can we directly apply logistic regression to this problem? Why?



Exponential Transfer
• The number of sunny days is both integer and positive 

• If we try to apply linear regression directly, our predictions will sometimes be negative 
non-integers 

• If we try to apply logistic regression directly, our predictions will always be between 0 
and 1 (and non-integer) 

• What if we replaced the sigmoid function with a different function that forces the 
expected value to be positive? 

  

• We can apply  to a linear weighting of features to get a positive expected value: 

f(t) = exp(t) ⟹ 0 ≤ f(t) < ∞

f

𝔼[y ∣ x] = f(w⊤x)



Poisson Regression
We can use the exponential transfer function to define a Poisson model for 
number of sunny days: 

Poisson Regression 

1.  

2.  

3.  

• Poisson distribution's parameter  is both the mean and the variance 
• Poisson distribution only places positive probability on integers

𝔼[y ∣ x] = f(ω⊤x) = exp(ω⊤x)
p(y ∣ x) = Poisson(λ)
λ = f(ω⊤x)

λ



Poisson Regression: MLE Solution
   

  

 

  

 

 

 

There is no closed-form solution to this optimization problem.

p(y ∣ x, ω = w) = Poisson(λ) =
λy exp(−λ)

y!
=

ew⊤xy exp(−ew⊤x)
y!

log p(y ∣ x, w) = log
ew⊤xy exp(−ew⊤xy)

y!
= log ew⊤xy + log exp (−ew⊤x) − log y!

= w⊤xy − ew⊤x − log y!

wMLE = arg maxw p(𝒟 ∣ w) = arg maxw ∏n
i=1 p(yi ∣ xi, w)

= arg maxw ∑n
i=1 log p(yi ∣ xi, w)

= arg maxw ∑n
i=1 w⊤xiyi − ew⊤xi − log yi!

= arg minw ∑n
i=1 ew⊤xi − w⊤xiyi

Question: How can we find ?wMLE



Natural Exponential Family 
Distributions

The Gaussian (Normal), Bernoulli, and Poisson distributions are all examples of 
distributions from the (natural) exponential family 

The natural exponential family of distributions are distributions with the form: 

  

•  is the parameter of the distribution 

•  is the log-normalizer function  

•  is the base measure function

p(y ∣ θ) = exp (θy−a(θ)+b(y))
θ

a : ℝ → ℝ

b : ℝ → ℝ



Natural Exponential Family 
Example: Poisson

 

 

 

 

 p(y ∣ θ) = exp (θy−a(θ)+b(y))

p(y ∣ λ) =
λye−λ

y!

= exp (log λy) exp(−λ)exp (log
1
y! )

= exp (log λy − λ + log
1
y! )

= exp (ylog λ − λ −log y!)

      

 

θ = log λ

a(θ) = exp(θ) = λ

b(y) = − log y!



Natural Exponential Family 
Example: Bernoulli

 

 

 

 

 

 p(y ∣ θ) = exp (θy−a(θ)+b(y))
p(y ∣ α) = αy(1 − α)1−y

=
αy

(1 − α)y−1

=
αy

(1 − α)y
(1 − α)

= ( α
1 − α )

y

(1 − α)

= exp (log ( α
1 − α )

y

+ log(1 − α))

 = exp (y log
α

1 − α
+ log(1 − α))

= exp (ylog
α

1 − α
− log

1
1 − α )

      

 

θ = log
α

1 − α

a(θ) = log (1 + exp(θ)) = log
1

1 − α

b(y) = 0



Natural Exponential Family 
Example: Gaussian with σ = 1

 

   

 

 

 p(y ∣ θ) = exp (θy−a(θ)+b(y))

p(y ∣ μ) =
1

2π
exp (−

1
2

(y − μ)2) = exp (log
1

2π ) exp (−
1
2

(y − μ)2)
= exp (log

1

2π ) exp (−
μ2 − 2μy + y2

2 )
= exp (log

1

2π ) exp ( −μ2 + 2μy − y2

2 )
= exp μy−

μ2

2
+ log ( 1

2π ) −
y2

2

      

 

θ = μ

a(θ) =
θ2

2

b(y) = log ( 1

2π ) −
y2

2



Log-Normalizer
 

The log-normalizer ensures that the probability density integrates to 1: 

 where , so 

 

 

  

 p(y ∣ θ) = exp (θy−a(θ)+b(y))

a(θ) = log z z = ∫𝒴
exp(θy + b(y)) dy

∫𝒴
exp(θy − a(θ) + b(y)) dy = ∫𝒴

exp(θy − log z + b(y)) dy

=
1

exp(log z) ∫𝒴
exp(θy + b(y)) dy

=
1

∫
𝒴

exp(θy + b(y)) dy ∫𝒴
exp(θy + b(y)) dy = 1

Properties 

 
∂a(θ)

∂θ
= 𝔼[Y]

∂2a(θ)
∂θ2

= 𝕍[Y]



Generalized Linear Models

• Linear, logistic, and Poisson regression are all generalized linear models 
• A generalized linear model is a model where 

1.  

2.  is an exponential family distribution 

• The transfer function  is typically the derivative of the log-normalizer of  
• i.e., the transfer function and the distribution family are chosen together

𝔼[y ∣ x] = f(w⊤x)

p(y ∣ x)

f p

Poisson Regression 

1.  

2.  

3.

𝔼[y ∣ x] = f(ω⊤x) = exp(ω⊤x)
p(y ∣ x) = Poisson(λ)
λ = f(ω⊤x)

Linear Regression 

1.  

2.  

3.

𝔼[y ∣ x] = ω⊤x
p(y ∣ x) = 𝒩(μ, σ2)
μ = ω⊤x

Logistic Regression 

1.  

2.  

3.

𝔼[y ∣ x] = σ(ω⊤x)
p(y ∣ x) = Bernoulli(α)
α = σ(ω⊤x)



Solving Generalized Linear Models
• Question: Can we analytically solve GLMs? 

• GLMs are typically solved using (stochastic) gradient descent: 

 

 

 

 

p(y ∣ θ) = exp (θy−a(θ)+b(y))
log p(y ∣ θ) = θy − a(θ) + b(y)

arg max
w

log p(y ∣ θ) = arg max
w

θy − a(θ) + b(y)

= arg max
w

w⊤xy − a(w⊤x) + b(y)

= arg min
w

a(w⊤x) − w⊤xy



Solving GLMs (2)
 

 

 

 

arg min
w

ci(w) = arg min
w

a(w⊤xi) − w⊤xiyi

∂ci(w)
∂wj

=
∂

∂wj
(a(w⊤xi) − w⊤xiyi)

=
∂a(w⊤xi)

∂wj
−

∂w⊤xiyi

∂wj

= ( ∂a(w⊤xi)
∂w⊤xi

−
∂w⊤xiyi

∂w⊤xi ) ∂w⊤xi

wj

= ( f(w⊤xi) − yi)xij

So the stochastic gradient descent 
update would be: 

wt+1 = wt − ηt (f(w⊤xi) − yi) xi



Summary
• Linear and logistic regression are both generalized linear models 

• So is Poisson regression 

• A generalized linear model is a model where: 

1.  

2.  is an exponential family distribution 
• An exponential family distribution is a distribution that can expressed as 

  

• The transfer function for a GLM is typically 

𝔼[y ∣ x] = f(w⊤x)

p(y ∣ x)

p(y ∣ θ) = exp (θy−a(θ)+b(y))
f =

∂a
∂θ


