| ogistic Regression &
| inear Classification

CMPUT 296: Basics of Machine Learning



| ogistics

* Thought Questions #3 due today at 11:59pm

* Thought Questions #4 (chapters 10 and 11) due Thursday, Nov 26/2020

* Assignment #3 is available; due Thursday, Dec 3/2020

* No class next week (Fall Reading Break)



Recap: Blas vs. Variance

—Xpected generalization error can be decomposed into bias and variance

e Using a biased estimator can be better than an unbiased one if it sufficiently
reduces variance

Worked example: linear regression
 MLE estimator is unbiased but can have high variance
« MAP estimator is biased but has a controllable maximum variance

This same principle applies to the choice of hypothesis class

e Bigger hypothesis class can be less biased, but higher variance

In all cases, exploiting prior knowledge Is the key to controlling bias vs. variance



Recap:
Why Is variance smaller than 671172
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3. Solving Logistic Regression



| inear (Binary) Classifiers

* \We've been using linear models for regression for the last several lectures
* You can also use them for classification:

o Parameters w define a linear decision boundary
* Qlbservations on one side of decision boundary classified positive, other side negative

A dataset is linearly separable if there exists a linear decision boundary that perfectly
classifies It




|_earning Linear Classifiers

. Formally, a linear binary classifier is a predictor f : R4 — {0,1} where
1 ifw!x >0,
J(x; W) = { |
0 otherwise.
* Question: Why O instead of 1.7 or something”?
* [here are two main approaches to learning linear classifiers:

1. Learn the decision boundary directly

2. Learn a model of p(y | X), and then predict 1 when p(y | X) > 0.5



| ogistic Regression

» Logistic regression is a way to model p(y | X):

p(y =1]x,w)=o(w'x)

« where o : R — [0,1] is an increasing function that maps everything to [0, 1]

» Sincey € {0,1}, this is a Bernoulli distribution

e Even though o must be nonlinear, the resulting classifier will be linear (why?)

 Question: If we perfectly model p(y | X), will our classifier always be correct?

* Question: \Why is this called logistic regression”? We are doing classification!



Sigmoid Functions

* A sigmoid (S-shaped) function is any function
o: R — [0,1]thatis:

1. Increasing:t, > 1, — o(t;) > o(1,)

0.7F

2. Squashing:0 <o(f) <1 Vrel 05}
* Logistic regression uses a specific sigmoid called N
the logistic function: 02




Classification with
Conditional Probabilities

Question: Suppose p(y = 1 | x) > 0.5. Would we ever want to predict
$ =07
Suppose we have two classifiers with equivalent accuracies.

* On our training dataset, they both predict the same labels for every
datapoint.

» Classifier A is based on a model that predicts p(y = 1 | x) € {0.4,0.6}
» Classifier B is based on a model that predicts p(y =1 | x) € {0.1,0.9}.

Question: \Which classifier is preferable?

Question: How should we train our classifiers to get the better version?



Maximum Likelihood for Classification
with Conditional Probabllities
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Maximum Likelihood for
|_ogistic Regression
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|_ogistic Regression: Gradient

c(w)=—y:ln G(WTXZ-) — (1 — y)In(1 — G(WTXZ-))

To find the gradient V ¢(w), find partial derivative of each term for each
component of w:
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|_ogistic Regression: Gradient
(First Term)
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|_Oogistic Regression:
Datapoint Gradient

Similarly, second term is

i(l — yl.)ln (1 — G(WTXi)) — (yi — I)G(WTXi)xlj
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|_Oogistic Regression:
Full Gradient
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Solving Logistic Regression

» Unfortunately, there is no closed-form solution to Vc(w) = 0

 Question: \What can we do instead?

 Gradient descent with gradient update:

n

_ T
Wi = W,—— X; (U(W X;) — Yi)
n e
=

« Stochastic gradient descent with gradient update (for randomly-chosen 1):

Wir1 = W — X (G(WTXi) — yi)



Why not Ordinary Least Squares”?

Instead of the maximum likelihood solution, we could have directly minimized squared error:

n

. 2
arg min — (G(WTXi) — yi)
weR“! n P

Our log-likelihood target is convex
(.e., second derivative Is everywhere positive semidefinite)

* This means that every local minimum is also a global minimum

This direct squared-error optimization target iIs non-convex

* [hat means that it might have many local minima, with no way to tell which is global
* [nfact, it turns out that this target can have exponentially many local minima

This Is another example of the benefit of thinking carefully albout which target to optimize



Summary

* Linear binary classification: Learn a linear decision boundary

* All observations on one "side"” of boundary are classified as 0O, all observations on the other
'side” are classified as 1

1 ifwlx>0
0 ifwlx<0

.e., f(X; W) = {

» Can learn boundary directly, or predict based on model p(y | X, w)

. Logistic regression: Learn a model p(y = 1 | X, w) = o(w!x)

* No closed-form solution for MLE; must learn numerically (e.g., SGD)

 MLE problem is convex; local optimum is also a global optimum

* [earning decision boundary directly is non-convex; can have exponentially many local optima



