
Logistic Regression & 
Linear Classification

CMPUT 296: Basics of Machine Learning 
 

Textbook §10.1-10.4



Logistics

• Thought Questions #3 due today at 11:59pm 

• Thought Questions #4 (chapters 10 and 11) due Thursday, Nov 26/2020 

• Assignment #3 is available; due Thursday, Dec 3/2020 

• No class next week (Fall Reading Break)



Recap: Bias vs. Variance
• Expected generalization error can be decomposed into bias and variance 

• Using a biased estimator can be better than an unbiased one if it sufficiently 
reduces variance 

• Worked example: linear regression  

• MLE estimator is unbiased but can have high variance 

• MAP estimator is biased but has a controllable maximum variance 

• This same principle applies to the choice of hypothesis class 

• Bigger hypothesis class can be less biased, but higher variance 

• In all cases, exploiting prior knowledge is the key to controlling bias vs. variance



Recap:  
Why is variance smaller than ?σ2/λ

Recall that 
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Linear (Binary) Classifiers
• We've been using linear models for regression for the last several lectures 
• You can also use them for classification: 

• Parameters  define a linear decision boundary 
• Observations on one side of decision boundary classified positive, other side negative 
• A dataset is linearly separable if there exists a linear decision boundary that perfectly 

classifies it
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Learning Linear Classifiers
• Formally, a linear binary classifier is a predictor  where 

  

• Question: Why 0 instead of 1.7 or something? 

• There are two main approaches to learning linear classifiers: 

1. Learn the decision boundary directly 

2. Learn a model of , and then predict 1 when 

f : ℝd+1 → {0,1}

f(x; w) = {1 if wTx > 0,
0 otherwise.

p(y ∣ x) p(y ∣ x) > 0.5



Logistic Regression
• Logistic regression is a way to model : 

  

• where  is an increasing function that maps everything to  

• Since , this is a Bernoulli distribution 

• Even though  must be nonlinear, the resulting classifier will be linear (why?) 

• Question: If we perfectly model , will our classifier always be correct? 

• Question: Why is this called logistic regression?  We are doing classification!

p(y ∣ x)

p(y = 1 ∣ x, w) = σ(wTx)

σ : ℝ → [0,1] [0,1]

y ∈ {0,1}

σ

p(y ∣ x)
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Sigmoid Functions
• A sigmoid (S-shaped) function is any function 

 that is: 

1. Increasing:  

2. Squashing:  

• Logistic regression uses a specific sigmoid called 
the logistic function: 

 

σ : ℝ → [0,1]

t1 > t2 ⟹ σ(t1) > σ(t2)

0 < σ(t) < 1 ∀t ∈ ℝ

σ(t) =
1

1 + exp(−t)



Classification with  
Conditional Probabilities

• Question: Suppose .  Would we ever want to predict 
? 

• Suppose we have two classifiers with equivalent accuracies. 
• On our training dataset, they both predict the same labels for every 

datapoint. 

• Classifier A is based on a model that predicts  

• Classifier B is based on a model that predicts . 
• Question: Which classifier is preferable?  
• Question: How should we train our classifiers to get the better version?

p(y = 1 ∣ x) > 0.5
̂y = 0

p(y = 1 ∣ x) ∈ {0.4,0.6}

p(y = 1 ∣ x) ∈ {0.1,0.9}



Maximum Likelihood for Classification 
with Conditional Probabilities
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Maximum Likelihood for 
Logistic Regression

 

 

 

 

ci(w) = − ln p(yi ∣ xi, w)

= − ln (σ(wTxi)yi(1 − σ(wTxi))1−yi)
= − ln (σ(wTxi)yi) − ln ((1 − σ(wTxi))1−yi)
= − yi ln σ(wTxi) − (1 − yi)ln(1 − σ(wTxi))

= − yi ln ( 1
1 + exp(−wTxi) ) − (1 − yi)ln (1 −

1
1 + exp(−wTxi) )



Logistic Regression: Gradient

  

To find the gradient , find partial derivative of each term for each 
component of : 

  

ci(w) = − yi ln σ(wTxi) − (1 − yi)ln(1 − σ(wTxi))

∇ci(w)
w

∂ci(w)
∂wj

= −
∂

∂wj
yi ln σ(wTx) −

∂
∂wj

(1 − yi)ln (1 − σ(wTx))



Logistic Regression: Gradient 
(First Term)
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Exercise: 
∂σ(z)

∂z
= σ(z)(1 − σ(z))

= 1

= yi (1 − σ(wTx)) xij ∎



Logistic Regression: 
Datapoint Gradient

Similarly, second term is  

  

So 

 

 

 

∂
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(1 − yi)ln (1 − σ(wTxi)) = (yi − 1)σ(wTxi)xij

∂
∂wj

ci(w) = − (yi (1 − σ(wTxi)) xij + (yi − 1)σ(wTxi)xij)
= − (yixij − yixijσ(wTx) + yixijσ(wTxi) − xijσ(wTxi))
= − (yixij − xijσ(wTxi))
= − (xij(yi − σ(wTxi))) = xij (σ(wTxi) − yi) ∎



Logistic Regression: 
Full Gradient
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Solving Logistic Regression
• Unfortunately, there is no closed-form solution to  

• Question: What can we do instead? 

• Gradient descent with gradient update: 

  

• Stochastic gradient descent with gradient update (for randomly-chosen ): 

 

∇c(w) = 0

wt+1 = wt −
ηt

n

n

∑
i=1

xi (σ(wTxi) − yi)

i

wt+1 = wt − ηtxi (σ(wTxi) − yi)



Why not Ordinary Least Squares?
• Instead of the maximum likelihood solution, we could have directly minimized squared error: 

  

• Our log-likelihood target is convex 
(i.e., second derivative is everywhere positive semidefinite) 

• This means that every local minimum is also a global minimum 
• This direct squared-error optimization target is non-convex 

• That means that it might have many local minima, with no way to tell which is global 
• In fact, it turns out that this target can have exponentially many local minima 

• This is another example of the benefit of thinking carefully about which target to optimize

arg min
w∈ℝd+1

1
n

n

∑
i=1

(σ(wTxi) − yi)2



Summary
• Linear binary classification: Learn a linear decision boundary  

• All observations on one "side" of boundary are classified as 0, all observations on the other 
"side" are classified as 1 

i.e.,   

• Can learn boundary directly, or predict based on model  

• Logistic regression: Learn a model  
• No closed-form solution for MLE; must learn numerically (e.g., SGD) 
• MLE problem is convex; local optimum is also a global optimum 
• Learning decision boundary directly is non-convex; can have exponentially many local optima

f(x; w) = {1 if wTx > 0
0 if wTx ≤ 0

p(y ∣ x, w)

p(y = 1 ∣ x, w) = σ(wTx)


