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Logistics

• Assignment #2 is due TODAY (at 11:59pm Mountain time) 

• Midterm exam is next Thursday (Oct 29) 

• Review class on Tuesday



Recap:  
Comparing Models' Generalization Error

• Our goal is to minimize generalization error: expected cost with respect to the underlying 
distribution 

• We will often want to compare the generalization errors of two models 
• The test set gives us  samples of generalization error 

• If the  confidence intervals for the two models do not overlap, then we say that one model 
has statistically significantly better generalization error than the other, with confidence level  

• More powerful: paired hypothesis test, e.g.: 
• Binomial counting test 
• Paired -test 

• -value: Probability of seeing our dataset given that null hypothesis is true 
• Null hypothesis: Both models have equal errors
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• Linear regression is useful for more than just linear models 
• Can obtain nonlinear functions by transforming the observation vector with 

arbitrary functions of  

• We write this as  

• E.g., for 1D polynomial regression:  
• We can then perform linear regression on  instead of : 

 

x
ϕ(x) = (ϕ0(x), …, ϕp(x))

ϕ(x) = (1,x, x2, …, xp)
ϕ(x) x

c(w) =
1
n

n

∑
i=1

(wTϕ(xi) − yi)2

Recap:  
Nonlinear Regression as Linear Regression
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Overfitting in Polynomial Regression
• Overfitting: Too-complicated model has low training error at the expense 

of high generalization error   
• e.g., polynomial regression with too-large polynomial degree 

• Question: How can we avoid overfitting in polynomial regression?



Avoiding Overfitting  
via Cross-Validation

One possible approach for avoiding overfitting in polynomial regression: 

 

1. Perform -fold cross-validation for -degree polynomial regression for all 
 

2. Let  be the  that minimizes the estimated generalization error 

3. Fit a -degree polynomial on the full training dataset

k p
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p*

Question: What are the possible problems with this approach?



Hyperparameter Selection 
as Feature Selection

• Choosing  in polynomial regression is equivalent 
to choosing which possible features to include 

• Polynomial features have a natural grouping 
• Usually doesn't make sense to include  if 

you aren't also including  

• Question: What if we have arbitrary features?  
How can we choose which subset to include? 

• What is the complexity of trying every subset?
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Detecting Overfitting Revisited: 
Weights

• Do you notice anything about the fitted weights for our polynomial example? 

  

• The overfitted 5th-degree polynomial has some large-magnitude weights 
(why?)

p = 1 : w = [1.50, 0.94]
p = 2 : w = [−1.24, 0.94, 1.47]
p = 5 : w = [−1.06, 3.84, 1.10, − 3.06, 0.084, 0.59]



Regularization

 
• The training cost depends on the dataset, but the penalty must depend only on the parameters 

• The  hyperparameter controls relative importance of training set cost vs. model complexity 
• For linear regression, common regularizations: 

        L2 regularizer ("ridge"):  

        L1 regularizer ("lasso"): 

Regularization:  
Instead of minimizing average training cost, minimize a combination of average training cost and 
model complexity: 

  c(w) =
1
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cost( f(xi; w), yi)+λpenalty(w)
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L2-Regularized Linear Regression

 

• The more features get used, the more complicated the model 

• The more features get used, the higher the sum of (squared) weights 

• Features with smaller-magnitude coefficients have less effect on output 

• So, only allow more complex models if the improvement in training cost is 
"worth it" 

• Question: What are the advantages of this approach over cross-validation?

 c(w) =
1
n

n

∑
i=1

(wTxi − yi)2+λ
d

∑
j=1

w2
j



L2-Regularization as MAP

• Up until now, we have considered the maximum likelihood solution to the 
linear regression problem 

• L2-Regularized linear regression can be understood as the MAP solution 
to linear regression, with an independent Gaussian prior on the weights 

• Each element assumed to have independent prior : 
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MAP Objective  
for Linear Regression

For MAP linear regression, we minimize the negative log posterior: 
 

 

 

 

       

wMAP = arg max
w∈ℝd+1

p(w ∣ 𝒟)

= arg max
w∈ℝd+1

log p(w ∣ 𝒟)

= arg min
w∈ℝd+1

− log p(w ∣ 𝒟)

= arg min
w∈ℝd+1

− log ( p(𝒟 ∣ w)p(w)
p(𝒟) )

= arg min
w∈ℝd+1

− log (p(𝒟 ∣ w)p(w)) = arg min
w∈ℝd+1

− log p(𝒟 ∣ w) − log p(w)



Log-Prior for Gaussian Prior
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MAP Objective for Linear 
Regression
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L1-Regularization
• It turns out that L1-regularization is 

equivalent to a Laplace prior on the 
weights (instead of a Gaussian) 

• Note that Laplace puts higher density 
at 0 than Gaussian 

• L1-regularization prefers sparse solutions; 
those that set more weights to exactly 0 

• Not just due to higher density at 0 

• Also interaction between the shape of 
the loss and the shape of the 
regularization penalty 



Summary
• Regularization: minimize the training cost plus a complexity penalty 

•  

• Only make a model more complex if it improves loss "enough" 
• The hyperparameter  controls our notion of "enough" 

• L2 Regularization: penalty is sum of squared weights:  

• L2 regularized linear regression corresponds to MAP inference with independent 
zero-mean Gaussian priors on each weight (except ) 

• L1 Regularization: Penalty is sum of absolute values:  

• Corresponds to MAP inference with independent Laplacian prior on weights 
• Produces sparse solutions (many entries of  are set to exactly 0)

c(w) = 1
n ∑n

i=1 cost( f(xi; w), yi)+λ penalty(w)
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