Regularization

CMPUT 296: Basics of Machine Learning



| ogistics

 Assignment #2 is due TODAY (at 11:59pm Mountain time)

 Midterm exam is next Thursday (Oct 29)

 Review class on Tuesday



Recap:
Comparing Models' Generalization Error

Our goal Is to minimize generalization error: expected cost with respect to the underlying
distribution

* We will often want to compare the generalization errors of two models

 [he test set gives us m samples of generalization error

fthe (1 — 0) confidence intervals for the two models do not overlap, then we say that one model
nas statistically significantly better generalization error than the other, with confidence level 0

More powerful: paired hypothesis test, €.9.:

e Binomial counting test

e Paired r-test

p-value: Probability of seeing our dataset given that null hypothesis is true

* Null hypothesis: Both models have equal errors



Recap:
Nonlinear Regression as Linear Regression

* Linear regression is useful for more than just linear models

e (Can obtain nonlinear functions by transforming the olbservation vector with
arbitrary functions of X

« We write this as ¢(X) = (¢y(X), ..., qbp(x))

» E.g., for 1D polynomial regression: ¢(x) = (1,x, XZ, oy XP)

» We can then perform linear regression on ¢(X) instead of X:

1 n
(W) =— ), (Wp(x) = 3’
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Overfitting iIn Polynomial Regression

* Overfitting: Too-complicated model has low training error at the expense
of high generalization error

* e.g., polynomial regression with too-large polynomial degree
* Question: How can we avoid overfitting in polynomial regression”?

| =—— p=1 mse=35.08
p=2 mse=2.23
— p=5 mse= 0.00




Avoiding Overfitting
via Cross-Validation

One possible approach for avoiding overfitting in polynomial regression:

1. Perform k-fold cross-validation for p-degree polynomial regression for all
1<p<P

2. Let p™ be the p that minimizes the estimated generalization error

3. Fit a p*-degree polynomial on the full training dataset

Question: \What are the possible problems with this approach?




Hyperparameter Selection
as Feature Selection

Choosing p in polynomial regression is equivalent
to choosing which possible features to include

Polynomial features have a natural grouping
e Usually doesn't make sense to include x> if S0
you aren't also including x4, x3, xz, X

Question: What if we have arbitrary features”?
How can we choose which subset to include?

What is the complexity of trying every subset” p =



Detecting Overfitting Revisited:
Weignts

* Do you notice anything about the fitted weights for our polynomial example®?

p=1:w=[150, 0.94]
p=2:w=[-124, 094, 147]

p=5:w=[-1.06, 1.10, 0.084, 0.59]

* [he overfitted 5th-degree polynomial has some large-magnitude weights
(why?)

| =— p=1 mse=35.08
p=2 mse=2.23
— p=5 mse= 0.00




Regularization

Regularization:
Instead of minimizing average training cost, minimize a combination of average training cost and

model complexity:
n

|
c(w) = — Z cost(f(x;; W), y,)+Apenalty(w)
=i

* The training cost depends on the dataset, but the penalty must depend only on the parameters

» The A hyperparameter controls relative importance of training set cost vs. model complexity
e For linear regression, common regularizations:

d
L2 regularizer ("ridge"): penalty(w) = Y  w?

j=1 "

d
L1 regularizer ("lasso"): penalty(w) = ijl | w: |




| 2-Regularized Linear Regression

1 n d
c(W) = ; Z (WTXZ- — yl-)2+/1 Z wj2
i=1 =1

he more features get used, the more complicated the model

The more features get used, the higher the sum of (squared) weights

* Features with smaller-magnitude coefficients have less effect on output

S0, only allow more complex models if the improvement in training cost is
‘worth it"

Question: \What are the advantages of this approach over cross-validation?




| 2-Regularization as MAP

* Up until now, we have considered the maximum likelihood solution to the
INnear regression problem

 L2-Regularized linear regression can be understood as the MAP solution
to linear regression, with an independent Gaussian prior on the weights

« Each element assumed to have independent prior A/ (0 :
t)
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MAP Objective
for Linear Regression

For MAP linear regression, we minimize the negative log posterior:

Wpap = arg max p(w | 9)

= arg max logp(w | Q)

= arg min — logp(w | &)
WERCHI
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= arg min — log (p(@ | W)p(w))




|_og-Prior for Gaussian Prior
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MAP Objective for Linear
Regression

arg min — logp(2 | w) — log p(w)

WMAP
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|_1-Regularization 7

e [t turns out that L1-regularization is
equivalent to a Laplace prior on the
weights (instead of a Gaussian)

* Note that Laplace puts higher density
at 0 than Gaussian

* [1-regularization prefers sparse solutions;
those that set more weights to exactly 0

* Not just due to higher density at O

* Also interaction between the shape of
the loss and the shape of the
regularization penalty




Summary

 Regularization: minimize the training cost plus a complexity penalty

e Cc(W) = %Z?zl cost(f(x;; W), y,)+ 4 penalty(w)
* Only make a model more complex if it improves loss "enough”

» The hyperparameter A controls our notion of "enough"

. L2 Regularization: penalty is sum of squared weights: penalty(w) = ]il wj2
e |2 regularized linear regression corresponds to MAP inference with independent

zero-mean Gaussian priors on each weight (except wy)

d

. L1 Regularization: Penalty is sum of absolute values: penalty(w) = ijl

» (Corresponds to MAP inference with independent Laplacian prior on weights

‘le

» Produces sparse solutions (many entries of w are set to exactly 0)



