Fvaluation of Models
& Hypothesis lesting

CMPUT 296: Basics of Machine Learning



| ogistics

* Quiz and Thought Questions #2 have been marked
e See eclass for marks and comments

* Question 6 (derive optimal predictor for a given cost function) seemed to
give people particular trouble

 Assignment #2 is due on Thursday (Oct 22)

 Midterm exam is next Thursday (Oct 29)



Recap: Generalization & Overtitting

Our goal is to minimize generalization error: expected cost with respect to
the underlying distribution

Sut we only have access to empirical error: average cost on a dataset

The empirical error of a model on its training data is a biased, over-optimistic
estimate of generalization error

Jsing an overly complex model leads to overfitting:
igh training performance at the expense of generalization performance

* Underfitting comes from using an overly simple model
A held-out test set gives an unbiased estimate of generalization error

e But you can only use it once!

o Alternatives: k-fold cross-validation; bootstrap resampling



Outline
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Probabilistic Comparison

 We can use a test set to obtain m samples of generalization error
e (or k-fold cross-validation, or bootstrap resampling, or...)

» We can estimate the generalization error of models f; and f, by the empirical costs

.1 N
Cr=— D c(f)and €, = — D c(f).  where ¢(f) = cost(f(x,), )
=1 =1

Questions

1. Suppose that C | < CA’Z. s f; a better model than f,?
2. If C 1 < CA,’Z, with what probability is f; a better model than f,?




Confldence Intervals

One approach is to make claims of the form

Prl & — E[C] ge]zl—a

.e., compute a (1 — o) confidence interval [é — €, C + €]
Suppose that we assume that our error is bounded a < ¢(f) < b Vf,i

* Question: Is that a plausible assumption?
Question: How could we use that assumption to find a confidence interval?

We can compute confidence intervals using concentration inequalities such as
Hoeffdings's Inequality or Chebyshev's inequality

 However, we typically make a distributional assumption instead (why?)



(Gaussian Confidence Interval

Suppose that we know that we assume that our errors ¢;(f) have a Gaussian
distribution

* Question: Is that a plausible assumption?

If the errors have a Gaussian distribution, then we can find a 95 % confidence interval

as simply [é — 1.9606/\/ m, C + 1.960/\/%]

+ More generally: [C — 25/20/\/%, C + 250/\/%] for 75, = ®1(5/2)

This will tend to give much tighter bounds than concentration inequalities

Question: What is the problem with this approach?

Question: Is it plausible to assume that we know 67



Student's f-Distribution

As an alternative, we can assume that the errors have a Student's t-distribution with m — 1
degrees of freedom

A 1 — 0 confidence interval for a sample of m costs, assuming that each cost is normally
distributed, is given by |C — €, C + €], where

S A
€ = Ly —= and S2 = D (c(f)—C)?

ts.m—1 depends on o (as with Gaussian Cl); also now depends on m
e asm — 00, gy 1 = Zsp (€., s g — O~1(5/2))

However, this expression does not depend on the unknown true variance o

. Sn% s the "Bessel corrected” variance estimator (often called the sample variance)



Comparing Two Models

Suppose that we have (1 — 0) confidence intervals for the generalization error of models f; and f5:

[Cl — €1, Cl + €] and [C2 — €, C2 + 6]

tC, +€; < C, — €, then we can say that f; is statistically significantly better than f, with

confidence level O:

f C; > C,, then at least one of the following must be true:

elither Cl > él -+ 61 or C2 < 62 — 62

Union bound:
Pr(A U B) < Pr(A) + Pr(B)

€ A € A
|—1C1_1| |€—2Cle

By the union bound:

Pr{(C,>C,;+¢€)V(C,<Cy—e)| <Pr|(C;>C,+e¢)

+ Pr

(C2<62_€2) — : :5




Ranking Models

Suppose we just want to rank two models, rather than quantifying their
exact generalization error

For a randomly-selected datapoint (X, Y'), let
W — { ] if cost (fl(X), Y) < cost (fz(X), Y)

0 otherwise.
iid

The test set consists of m observations Wy, ..., W~ W

Let k be the number of "wins" (i.e., w;, = 1) Question:

Let f = Pr(W, = 1) f f, is better than f5,
then what is 7




Hypothesis lest:
Binomial Counting Test

We want to do a hypothesis test:

1
VS H1ﬂ>_

|
H,: p=—
0P >

2

m
1. We compute the probability p = Pr [2 W. > k] of seeing at least k "wins",
i=1
under the assumption that H,, (the null hypothesis) is true

2. It p < a, then we reject the null hypothesis with significance level of a

e @ is pretty arbitrary, but typically ¢ € {0.01,0.05,0.10}



Hypothesis lest:
Binomial Counting Test

Pr(W; = wy, oo Wy, = w,) = [T (wiB+ (1 = w1 = ) = g1 = py
=1

J

J=k



Hypothesis lests: Paired 7- lest

Consider the dataset to be m observations of differences in cost: ¢;(f;) — ¢,(f>)

If errors are distributed normally, then so are the differences

« \We don't know the variance, so use a f-distribution instead of Gaussian

If the models are equally good, then expected value for each difference is O

Null hypothesis: expected value of difference is O

p-value: the probabillity that empirical average difference will be at least as large
I l «

as d = szdi =— ) () - c(fy)

]=

m
=1



Which Test to Use?

—ach of these two tests makes parametric assumptions

Paired 7-test: Paired errors are 1.1.d. normally distributed

* Question: \When might this assumption fail to hold?
Binomial counting test: Compared values are in {0,1 }
e Question: WWhen might this assumption fail to hold?

Factors to consider:

1. Applicability of the assumptions

2. Power of the test: Probabillity of rejecting null when null is false
» (Confidence intervals are a low-power test



Summary

We will often want to compare the generalization errors of two models

o But we can't actually observe the generalization errors directly

fthe (1 — 0) confidence intervals for the two models do not over

ap, t

that one model has statistically significantly better generalization e
other, with confidence level 6

More powertul: paired hypothesis test, e.g..

 Binomial counting test

e Paired f-test

ror t

nen we say

nan the

p-value: Probability of seeing our dataset given that null hypothesis is true

* Null hypothesis: Both models have equal errors



