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Logistics

• Quiz and Thought Questions #2 have been marked 

• See eclass for marks and comments 

• Question 6 (derive optimal predictor for a given cost function) seemed to 
give people particular trouble 

• Assignment #2 is due on Thursday (Oct 22) 

• Midterm exam is next Thursday (Oct 29)



Recap: Generalization & Overfitting
• Our goal is to minimize generalization error: expected cost with respect to 

the underlying distribution 
• But we only have access to empirical error: average cost on a dataset 
• The empirical error of a model on its training data is a biased, over-optimistic 

estimate of generalization error 
• Using an overly complex model leads to overfitting:  

High training performance at the expense of generalization performance 
• Underfitting comes from using an overly simple model 

• A held-out test set gives an unbiased estimate of generalization error 
• But you can only use it once! 
• Alternatives: -fold cross-validation; bootstrap resamplingk
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Probabilistic Comparison
• We can use a test set to obtain  samples of generalization error 

• (or -fold cross-validation, or bootstrap resampling, or...) 

• We can estimate the generalization error of models  and  by the empirical costs 
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Questions 

1. Suppose that .  Is  a better model than ? 

2. If , with what probability is  a better model than ?

Ĉ1 < Ĉ2 f1 f2
Ĉ1 < Ĉ2 f1 f2



Confidence Intervals
• One approach is to make claims of the form 

  

• i.e., compute a  confidence interval  

• Suppose that we assume that our error is bounded  
• Question: Is that a plausible assumption?  

• Question: How could we use that assumption to find a confidence interval? 
• We can compute confidence intervals using concentration inequalities such as 

Hoeffdings's Inequality or Chebyshev's inequality 
• However, we typically make a distributional assumption instead (why?)

Pr [ Ĉ − 𝔼[C] ≤ ϵ] ≥ 1 − δ
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Gaussian Confidence Interval
• Suppose that we know that we assume that our errors  have a Gaussian 

distribution 

• Question: Is that a plausible assumption? 

• If the errors have a Gaussian distribution, then we can find a  confidence interval 
as simply  

• More generally:  for  

• This will tend to give much tighter bounds than concentration inequalities 

• Question: What is the problem with this approach? 

• Question: Is it plausible to assume that we know ?
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Student's -Distributiont
• As an alternative, we can assume that the errors have a Student's t-distribution with  

degrees of freedom 

• A  confidence interval for a sample of  costs, assuming that each cost is normally 
distributed, is given by , where 

  and   

•  depends on  (as with Gaussian CI); also now depends on  

• as ,   (i.e., ) 

• However, this expression does not depend on the unknown true variance  

•  is the "Bessel corrected" variance estimator (often called the sample variance)
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Comparing Two Models
• Suppose that we have  confidence intervals for the generalization error of models  and : 

 and  

• If , then we can say that  is statistically significantly better than  with 
confidence level :  

• If , then at least one of the following must be true:  

either  or  

 
• By the union bound: 
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Pr(A ∪ B) ≤ Pr(A) + Pr(B)



Ranking Models
• Suppose we just want to rank two models, rather than quantifying their 

exact generalization error 

• For a randomly-selected datapoint , let 

   

• The test set consists of  observations   

• Let  be the number of "wins" (i.e., ) 

• Let 

(X, Y)

W = {1 if  cost (f1(X), Y) < cost (f2(X), Y)
0 otherwise.

m W1, …, Wm
i.i.d∼ W

k wi = 1

β = Pr(Wi = 1)
Question: 

If  is better than , 
then what is ?

f1 f2
β



Hypothesis Test: 
Binomial Counting Test

We want to do a hypothesis test: 

    vs    

1. We compute the probability of seeing at least  "wins", 

under the assumption that  (the null hypothesis) is true 

2. If , then we reject the null hypothesis with significance level of  

•  is pretty arbitrary, but typically 
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Hypothesis Test: 
Binomial Counting Test

 

 

 

So when , we can conclude that  is significantly better 

than , with .
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Hypothesis Tests: Paired -Testt
• Consider the dataset to be  observations of differences in cost:  

• If errors are distributed normally, then so are the differences 

• We don't know the variance, so use a -distribution instead of Gaussian 

• If the models are equally good, then expected value for each difference is 0 

• Null hypothesis: expected value of difference is 0 

• -value: the probability that empirical average difference will be at least as large 

as 
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Which Test to Use?
• Each of these two tests makes parametric assumptions 

• Paired -test: Paired errors are i.i.d. normally distributed 
• Question: When might this assumption fail to hold? 

• Binomial counting test: Compared values are in  
• Question: When might this assumption fail to hold? 

• Factors to consider: 
1. Applicability of the assumptions 
2. Power of the test: Probability of rejecting null when null is false 

• Confidence intervals are a low-power test

t

{0,1}



Summary
• We will often want to compare the generalization errors of two models 

• But we can't actually observe the generalization errors directly 

• If the  confidence intervals for the two models do not overlap, then we say 
that one model has statistically significantly better generalization error than the 
other, with confidence level  

• More powerful: paired hypothesis test, e.g.: 
• Binomial counting test 
• Paired -test 

• -value: Probability of seeing our dataset given that null hypothesis is true 
• Null hypothesis: Both models have equal errors
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