
Solving Linear Regression
& Polynomial Regression

CMPUT 296: Basics of Machine Learning

Textbook §7.2-7.4

Recap: Linear Regression

Probabilistic approach:
1. Assume i.i.d. Gaussian noise:
2. Use MLE to estimate model from resulting parametric family

3. Use the optimal predictor for the estimated model :

A linear predictor has the form

 f(x) = w0 + w1x1 + … + wdxd =
d

∑
j=0

wjxj = wTx

Y ∼ 𝒩(ωTx, σ2)

ℱ = {p(⋅ ∣ x) = 𝒩(wTx, σ2) ∣ w ∈ ℝd+1}
w*

f*(x) = 𝔼[Y ∣ X = x] = wTx

Outline

1. Recap & Logistics

2. Solving Linear Regression

3. Polynomial Regression

Linear Regression:
Analytical Solution

For a small enough dataset, we can find analytically.

, where

wMLE

wMLE = arg min
w∈ℝd+1

c(w) = arg min
w∈ℝd+1

n

∑
i=1

(yi − wTxi)2

= arg min
w∈ℝd+1

1
n

n

∑
i=1

1
2

(yi − wTxi)2

= arg min
w∈ℝd+1

1
n

n

∑
i=1

1
2

(yi − wTxi)2

= arg min
w∈ℝd+1

1
n

n

∑
i=1

ci(w) ci(w) =
1
2

(yi − wTxi)2

Constant doesn't change argmin

Keep total in same range as size of grows𝒟

We will optimize separatelyci

Stationary Points (1)

We can compute the gradient for each datapoint separately:

Recall that the gradient is just a vector of partial derivatives (one for each),
so we can actually compute each element of the gradient separately.

∇c(w) = ∇[1
n

n

∑
i=1

ci(w)] =
1
n

n

∑
i=1

∇ci(w)

wj

=
1
n

n

∑
i=1

∂ci(w)
∂w0

⋮
∂ci(w)
∂wd

Partial Derivatives of ci

 where

 by the chain rule

∂ci(w)
∂wj

=
∂

∂wj

1
2

(xT
i w − yi)2

=
∂

∂wj

1
2

u2 u = (xT
i w − yi)

=
∂ 1

2 u2

∂u
∂u
∂wj

= u
∂u
∂wj

= u
∂

∂wj
xT

i w − yi

= u
∂

∂wj

d

∑
m=0

ximwm − yi

= u
d

∑
m=0

∂ximwm

∂wj

= uxij

= (xT
i w − yi)xij

∂yi

∂wj
= 0

What is for ?
∂ximwm

∂wj
m ≠ j

Stationary Points (2)

So to set , we must solve a system of equations:

∂ci(w)
∂wj

= (xT
i w − yi)xij

∇c(w) =
1
n

n

∑
i=1

∂ci(w)
∂w0

⋮
∂ci(w)
∂wd

=

1
n ∑n

i=1
∂ci(w)
∂w0

⋮
1
n ∑n

i=1
∂ci(w)
∂wd

=

1
n ∑n

i=1 (xT
i w − yi)xi0

⋮
1
n ∑n

i=1 (xT
i w − yi)xid

∇c(w) = 0 d + 1

1
n

n

∑
i=1

(xT
i w − yi)xij = 0 ∀0 ≤ j ≤ d

Stationary Points (3)

1
n

n

∑
i=1

xij(xT
i w − yi) = 0 ∀0 ≤ j ≤ d

⟹
1
n

n

∑
i=1

xi(xT
i w − yi) = 0

⟹
1
n

n

∑
i=1

xixT
i w −

1
n

n

∑
i=1

xiyi = 0

⟹ (1
n

n

∑
i=1

xixT
i) w =

1
n

n

∑
i=1

xiyi

(recall that)xi =

xi0
xi1
⋮
xid

⟹ Aw = b

⟹ w = A−1b
A b

(if is invertible)A

Analytical Solution Drawback
In practice, we don't usually solve for analytically (why?)

 costs operations to construct (why?)

Matrix inversion costs operations.

So analytic solution costs .

Question: Why not just ?

w

A =
1
n

n

∑
i=1

xixT
i O(nd2)

O(d3)

O(nd2 + d3)

O(d3)

 timesn
  

element matrix
(d + 1) × (d + 1)

Linear Regression:
Numerical Solution

• We can use gradient descent to find

• Each gradient descent update costs :

First-order gradient descent update:

 wt+1 ← wt − ηt ∇c(wt)

arg min
w

c(w)

O(nd)

∇c(w) =
1
n

n

∑
i=1

xi(xT
i w − yi)

 timesn multiplications

and additions

d + 1

• So iterations of gradient
descent costs

• For large (or small),
this is a lot cheaper than

• Can be very fast to find an
approximate solution

• Still very costly for large

k
O(knd)

d n

O(d3 + nd2)

n

Linear Regression
Stochastic Gradient Descent

First-order gradient descent:

 with

Question: What is the time complexity of iterations of SGD?

wt+1 ← wt − ηt ∇c(wt) ∇c(w) =
1
n

n

∑
i=1

xi(xT
i w − yi)

Stochastic gradient descent (SGD): 
Do the gradient update using an estimate of the true batch gradient:

1. Uniformly sample a datapoint index from

2. Do an estimated gradient step
where

i {1,…, n}

wt+1 ← wt − ηtg(i)
g(i) = xi(xT

i w − yi)

k

Unbiased Estimator of Gradient

.

 ∇c(w) =
1
n

n

∑
i=1

xi(xT
i w − yi) I ∼ Unif{1,…, n}

𝔼[g(I)] =
n

∑
i=1

p(i)g(i) =
n

∑
i=1

1
n

g(i) =
1
n

n

∑
i=1

g(i)

=
1
n

n

∑
i=1

xi(xT
i w − yi)

= ∇c(w)

 is an unbiased estimator of .g(I) ∇c(w)

Linear Regression for
Nonlinear Predictors

• Linear regression is useful for more than just linear models
• Can obtain nonlinear functions by transforming the observation vector

before fitting
• Then do linear regression on the transformed vector

• We write this as

• Note that each takes the entire observation vector

• need not equal
• Question: Have we seen an example of this already?

ϕ(x) = (ϕ0(x), …, ϕp(x))
ϕj x

p d
ϕ

x1
⋮
xd

=

1
x1
⋮
xd

1D Polynomial Regression
• In the one-dimensional case, OLS would learn

• We can do polynomial regression instead:

• But notice that this is just linear regression with a particular
!

• Question: Can a linear model learn anything that a polynomial model cannot?

f(x) = w0 + w1x

f(x) =
p

∑
j=0

wjxj

ϕ(x) = (x0, x1, …, xp)

=
p

∑
j=0

wjϕj(x) = wTϕ(x)

w =
w0
⋮
wp

ϕ(x) =
ϕ0(x)

⋮
ϕp(x)

Multivariate Polynomial Regression
• We can also do polynomial regression in the multi-dimensional case

• Example: For and : 𝒳 = ℝ2 p = 2

ϕ(x) =

ϕ0(x) = 1.0
ϕ1(x) = x1

ϕ2(x) = x2

ϕ3(x) = x1x2

ϕ4(x) = x2
1

ϕ4(x) = x2
2

Question:

What do we need to do differently to train nonlinear
models (like polynomial regression) with linear regression?

Summary

• Linear regression is the process of finding a vector of weights that minimizes the expected

cost of the prediction
• This can be solved analytically by solving a system of linear equations

• But this can be very expensive for large :
• More common solved numerically by first-order gradient descent

• But this can also be very expensive for large : for iterations
• We can get around this using stochastic gradient descent

• Linear regression can be straightforwardly extended to nonlinear regression
• Just do linear regression on a bunch of nonlinear features

A linear predictor has the form f(x) = w0 + w1x1 + … + wdxd =
d

∑
j=0

wjxj = wTx

w

d O(nd2 + d3)

n O(ndk) k

