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Recap: Linear Regression

 

Probabilistic approach:  
1. Assume i.i.d. Gaussian noise:  
2. Use MLE to estimate model from resulting parametric family 

 

3. Use the optimal predictor for the estimated model : 
 

A linear predictor has the form 

 f(x) = w0 + w1x1 + … + wdxd =
d

∑
j=0

wjxj = wTx

Y ∼ 𝒩(ωTx, σ2)

ℱ = {p( ⋅ ∣ x) = 𝒩(wTx, σ2) ∣ w ∈ ℝd+1}
w*

f*(x) = 𝔼[Y ∣ X = x] = wTx
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Linear Regression: 
Analytical Solution

For a small enough dataset, we can find  analytically. 
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Constant doesn't change argmin

Keep total in same range as size of  grows𝒟

We will optimize  separatelyci



Stationary Points (1)

We can compute the gradient for each datapoint separately: 

 

Recall that the gradient is just a vector of partial derivatives (one for each ), 
so we can actually compute each element of the gradient separately.
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Partial Derivatives of ci
 

   where  

  by the chain rule 
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Stationary Points (2)
 

 

So to set , we must solve a system of  equations: 
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Stationary Points (3)
  

   

 

1
n

n

∑
i=1

xij(xT
i w − yi) = 0 ∀0 ≤ j ≤ d

⟹
1
n

n

∑
i=1

xi(xT
i w − yi) = 0

⟹
1
n

n

∑
i=1

xixT
i w −

1
n

n

∑
i=1

xiyi = 0

⟹ ( 1
n

n

∑
i=1

xixT
i ) w =

1
n

n

∑
i=1

xiyi

(recall that )xi =

xi0
xi1
⋮
xid

 

 

⟹ Aw = b

⟹ w = A−1b
A b

(if  is invertible)A



Analytical Solution Drawback
In practice, we don't usually solve for  analytically (why?) 

  costs  operations to construct (why?) 

Matrix inversion costs  operations.   

So analytic solution costs . 

Question: Why not just ?

w

A =
1
n

n

∑
i=1

xixT
i O(nd2)

O(d3)

O(nd2 + d3)

O(d3)

 timesn
  

element matrix
(d + 1) × (d + 1)



Linear Regression: 
Numerical Solution

 

• We can use gradient descent to find  

• Each gradient descent update costs : 

 

First-order gradient descent update: 

 wt+1 ← wt − ηt ∇c(wt)

arg min
w

c(w)

O(nd)

∇c(w) =
1
n

n

∑
i=1

xi(xT
i w − yi)

 timesn  multiplications

and additions

d + 1

• So  iterations of gradient 
descent costs  

• For large  (or small ), 
this is a lot cheaper than 

 

• Can be very fast to find an 
approximate solution 

• Still very costly for large 

k
O(knd)

d n

O(d3 + nd2)

n



Linear Regression 
Stochastic Gradient Descent

First-order gradient descent: 

    with     

 

Question: What is the time complexity of  iterations of SGD?

wt+1 ← wt − ηt ∇c(wt) ∇c(w) =
1
n

n

∑
i=1

xi(xT
i w − yi)

Stochastic gradient descent (SGD): 
Do the gradient update using an estimate of the true batch gradient: 

1. Uniformly sample a datapoint index  from  

2. Do an estimated gradient step  
where  

i {1,…, n}

wt+1 ← wt − ηtg(i)
g(i) = xi(xT

i w − yi)

k



Unbiased Estimator of Gradient
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Linear Regression for 
Nonlinear Predictors

• Linear regression is useful for more than just linear models 
• Can obtain nonlinear functions by transforming the observation vector 

before fitting 
• Then do linear regression on the transformed vector 

• We write this as  

• Note that each  takes the entire observation vector  

•  need not equal  
• Question: Have we seen an example of this already?

ϕ(x) = (ϕ0(x), …, ϕp(x))
ϕj x

p d
ϕ

x1
⋮
xd

=

1
x1
⋮
xd



1D Polynomial Regression
• In the one-dimensional case, OLS would learn 

 

• We can do polynomial regression instead: 

 

• But notice that this is just linear regression with a particular 
! 

• Question: Can a linear model learn anything that a polynomial model cannot?

f(x) = w0 + w1x

f(x) =
p

∑
j=0

wjxj

ϕ(x) = (x0, x1, …, xp)

=
p

∑
j=0

wjϕj(x) = wTϕ(x)

w =
w0
⋮
wp

ϕ(x) =
ϕ0(x)

⋮
ϕp(x)



Multivariate Polynomial Regression
• We can also do polynomial regression in the multi-dimensional case 

• Example: For  and : 𝒳 = ℝ2 p = 2

ϕ(x) =

ϕ0(x) = 1.0
ϕ1(x) = x1

ϕ2(x) = x2

ϕ3(x) = x1x2

ϕ4(x) = x2
1

ϕ4(x) = x2
2

Question: 

What do we need to do differently to train nonlinear 
models (like polynomial regression) with linear regression?



Summary

 
• Linear regression is the process of finding a vector  of weights that minimizes the expected 

cost of the prediction 
• This can be solved analytically by solving a system of linear equations 

• But this can be very expensive for large :  
• More common solved numerically by first-order gradient descent 

• But this can also be very expensive for large :  for  iterations 
• We can get around this using stochastic gradient descent 

• Linear regression can be straightforwardly extended to nonlinear regression 
• Just do linear regression on a bunch of nonlinear features

A linear predictor has the form  f(x) = w0 + w1x1 + … + wdxd =
d

∑
j=0

wjxj = wTx

w

d O(nd2 + d3)

n O(ndk) k


