Solving Linear Regression
& Polynomial Regression

CMPUT 296: Basics of Machine Learning



Recap: Linear Regression

A linear predictor has the form

d
_ _ — wl
fX)=wy+wx;+ ... +wx; = E Wix; = W' X
j=0

Probabilistic approach:

1. Assume i.i.d. Gaussian noise: Y ~ /V(a)TX, 02)

2. Use MLE to estimate model from resulting parametric family
F = {p(- | x) = N (WIx,6%) |wel d“}

3. Use the optimal predictor for the estimated model w*:
fE*x) =E[Y| X =x]=wx
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| Inear Regression;
Analytical Solution

For a small enough dataset, we can find Wy, g analytically.

W\ E = arg min c¢(w) = arg min 2 (v; — wix))?
=1
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Stationary Points (1)

We can compute the gradient for each datapoint separately:

Ve(w) =V . D c(w)

Recall that the gradient is just a vector of partial derivatives (one for each W),

SO we can actually compute each element of the gradient separately.



Partial Derivatives oOf ¢;
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Stationary Points (2)

oc.(w)
dc(W) 1 n 0c (w) i . .
] & oW n zizl owy n Zizl (Xi W= Yi)xio
VC(W) — Z — . p—
n i=1 dc(w) 1 n 0c (w) l zn (XTW - )x

So to set Ve(w) = 0, we must solve a system of d + 1 equations:

1 n
_z:(XiTW_yi)xzj:O vV0<j<d
n

i=1



Stationary Points (3)

(if A is invertible)




Analytical Solution Drawback

In practice, we don't usually solve for w analytically (why?)

1 n
A =— Z costs O(nd?) operations to construct (why?)
n -
=1 \

T d+1)Xx({d+ 1)

1 times element matrix

Matrix inversion costs O(d>) operations.
So analytic solution costs O(nd” + d°).

Question: Why not just O(d?>)?



| Inear Regression;
Numerical Solution

-irst-order gradient descent update: . S0 k iterations of gradient

W, < W, —1nVcw, descent costs O(knd)

 For large d (or small n),
. e can use gradient descent to find arg min c(w) this is a lot cheaper than

W O(d> + nd?)

 Each gradient descent update costs O(nd):

Ve(w) = %Z x{x/w|-y)
=1 T
T

1 times d + 1 multiplications
and additions

 (Can be very fast to find an
approximate solution

o Still very costly for large n



| Inear Regression
Stochastic Gradient Descent

First-order gradient descent:
n

. I T
W_.; < W —1nVcw,) with Vc(w)=— Z X;(X: W — ;)

n
=1

Stochastic gradient descent (SGD):
Do the gradient update using an estimate of the true batch gradient:

1. Uniformly sample a datapoint index i from {1,...,n}

2. Do an estimated gradient step W, | < W, — 1,8(7)
where g(i) = Xl-(Xl-TW ),

Question: \What is the time complexity of k iterations of SGD?




Unblased Estimator of Gradient

n

|
VC(W)=—ZXi(XiTW—yi) [ ~Unmi{l,...,n}
n

=1

n

1
[g()] = Zp(z)g(z) = 2, —8()

=1

=—ZX(X W — )

= Vc(w).

g(]) is an unbiased estimator of V c(w).




| Inear Regression for
Nonlinear Predictors

Linear regression iIs useful for more than just linear models

Can obtain nonlinear functions by transforming the observation vector
oefore fitting

* Then do linear regression on the transformed vector
We write this as ¢(X) = (¢O(x), - ¢p(x))

+ Note that each ¢); takes the entire observation vector X

» p need not equal d Xy
Question: Have we seen an example of this already? ?



1D Polynomial Regression

INn the one-dimensional case, OLS would learn

f(x) = wy + wix Wy

We can do polynomial regression instead: W= »
P

P | p
fo =) wal =Y we ) = wgx)
=0 /=0 Po(X)

But notice that this is just linear regression with a particular D(X) =

d(x) = (xO,xl, ...,xp)! ¢p.(X)

Question: Can a linear model learn anything that a polynomial model cannot?



MVlultivariate Polynomial Regression

 We can also do polynomial regression in the multi-dimensional case

. Example: For & = R*and p = 2:

(X) =x
¢1 : Question:
P,(X) = x,
D(X) = What do we need to do differently to train nonlinear
P5(X) = x1x
3 e models (like polynomial regression) with linear regression®?
2
P4(X) = Xx;

P4(X) = Xzz



Summary

d
A linear predictor has the form f(X) = wy + wix; + ... + W x, = Z WiX; = w!x

J=0

Linear regression is the process of finding a vector w of weights that minimizes the expected
cost of the prediction

This can be solved analytically by solving a system of linear equations

. But this can be very expensive for large d: O(nd? + d°)

More common solved numerically by first-order gradient descent

 But this can also be very expensive for large n: O(ndk) for k iterations
* \We can get around this using stochastic gradient descent

Linear regression can be straightforwardly extended to nonlinear regression

e Just do linear regression on a bunch of nonlinear features




